Disjoint hypercyclic Toeplitz operators

被引:0
|
作者
Deger, Ozkan [1 ]
Eskisehirli, Beyaz Basak [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, Istanbul, Turkiye
关键词
Disjoint hypercyclic operator; d-Hypercyclic operator; Hypercyclic operator; Toeplitz operator;
D O I
10.1007/s00013-024-02084-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to describe new classes of disjoint hypercyclic Toeplitz operators on the Hardy space H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}. We examine the disjoint hypercyclicity of the coanalytic Toeplitz operators, the Toeplitz operators with the symbols az<overline>+b+cz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a{\bar{z}}+b+cz$$\end{document}, where a,b,c is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,c\in {\mathbb {C}}$$\end{document}, and the Toeplitz operators with the symbols p(z<overline>)+phi(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\bar{z})+\varphi (z)$$\end{document}, where p is a polynomial and phi is an element of H infinity(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in H<^>\infty (\mathbb {D})$$\end{document}. The hypercyclicity of these classes of Toeplitz operators has been characterized by G. Godefroy and J. Shapiro (J. Funct. Anal., 98, 1991), S. Shkarin (arXiv:1210.3191v1, 2012), and A. Baranov and L. Lishanskii (Results Math., 70, 2016), respectively. Based on their results, we first provide a criterion for the bounded linear operators to be disjoint hypercyclic. Using this criterion, we then establish certain conditions under which the aforementioned classes of Toeplitz operators are disjoint hypercyclic in terms of their symbols.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [21] Disjoint and common hypercyclic algebras
    Bayart, Frederic
    Costa, Fernando, Jr.
    Papathanasiou, Dimitris
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 250 (01) : 211 - 264
  • [22] ε-hypercyclic operators that are not δ-hypercyclic for δ &lt; ε
    Bayart, Frederic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [23] Multi-hypercyclic operators are hypercyclic
    Alfredo Peris
    Mathematische Zeitschrift, 2001, 236 : 779 - 786
  • [24] Multi-hypercyclic operators are hypercyclic
    Peris, A
    MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (04) : 779 - 786
  • [25] CESARO-HYPERCYCLIC AND HYPERCYCLIC OPERATORS
    El Berrag, Mohammed
    Tajmouati, Abdelaziz
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 557 - 563
  • [26] DISJOINT HYPERCYCLIC WEIGHTED TRANSLATIONS ON GROUPS
    Chen, Chung-Chuan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (03): : 459 - 476
  • [27] Spaces that admit hypercyclic operators with hypercyclic adjoints
    Petersson, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) : 1671 - 1676
  • [28] Numerically Hypercyclic Operators
    Kim, Sung Guen
    Peris, Alfredo
    Song, Hyun Gwi
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 72 (03) : 393 - 402
  • [29] Numerically Hypercyclic Operators
    Sung Guen Kim
    Alfredo Peris
    Hyun Gwi Song
    Integral Equations and Operator Theory, 2012, 72 : 393 - 402
  • [30] Sums of hypercyclic operators
    Grivaux, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (02) : 486 - 503