Disjoint hypercyclic Toeplitz operators

被引:0
|
作者
Deger, Ozkan [1 ]
Eskisehirli, Beyaz Basak [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, Istanbul, Turkiye
关键词
Disjoint hypercyclic operator; d-Hypercyclic operator; Hypercyclic operator; Toeplitz operator;
D O I
10.1007/s00013-024-02084-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to describe new classes of disjoint hypercyclic Toeplitz operators on the Hardy space H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}. We examine the disjoint hypercyclicity of the coanalytic Toeplitz operators, the Toeplitz operators with the symbols az<overline>+b+cz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a{\bar{z}}+b+cz$$\end{document}, where a,b,c is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,c\in {\mathbb {C}}$$\end{document}, and the Toeplitz operators with the symbols p(z<overline>)+phi(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\bar{z})+\varphi (z)$$\end{document}, where p is a polynomial and phi is an element of H infinity(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in H<^>\infty (\mathbb {D})$$\end{document}. The hypercyclicity of these classes of Toeplitz operators has been characterized by G. Godefroy and J. Shapiro (J. Funct. Anal., 98, 1991), S. Shkarin (arXiv:1210.3191v1, 2012), and A. Baranov and L. Lishanskii (Results Math., 70, 2016), respectively. Based on their results, we first provide a criterion for the bounded linear operators to be disjoint hypercyclic. Using this criterion, we then establish certain conditions under which the aforementioned classes of Toeplitz operators are disjoint hypercyclic in terms of their symbols.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [1] Disjoint hypercyclic Toeplitz operatorsDisjoint hypercyclic Toeplitz operatorsÖ. Değer and B.B. Eskişehirli
    Özkan Değer
    Beyaz Başak Eskişehirli
    Archiv der Mathematik, 2025, 124 (3) : 301 - 310
  • [2] Disjoint hypercyclic operators
    Bernal-Gonzalez, Luis
    STUDIA MATHEMATICA, 2007, 182 (02) : 113 - 131
  • [3] Hypercyclic Toeplitz Operators
    Baranov, Anton
    Lishanskii, Andrei
    RESULTS IN MATHEMATICS, 2016, 70 (3-4) : 337 - 347
  • [4] Hypercyclic Toeplitz Operators
    Anton Baranov
    Andrei Lishanskii
    Results in Mathematics, 2016, 70 : 337 - 347
  • [5] Dual disjoint hypercyclic operators
    Salas, Hector N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 106 - 117
  • [6] Extending families of disjoint hypercyclic operators
    Martin, Ozgur
    Sanders, Rebecca
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (02)
  • [7] Hypercyclic pairs of coanalytic toeplitz operators
    Feldman, Nathan S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 58 (02) : 153 - 173
  • [8] EXISTENCE OF HYPERCYCLIC SUBSPACES FOR TOEPLITZ OPERATORS
    Lishanskii, Andrei Alexandrovich
    UFA MATHEMATICAL JOURNAL, 2015, 7 (02): : 102 - 105
  • [9] New classes of hypercyclic Toeplitz operators
    Abakumov, Evgeny
    Baranov, Anton
    Charpentier, Stephane
    Lishanskii, Andrei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 168
  • [10] Hypercyclic Pairs of Coanalytic Toeplitz Operators
    Nathan S. Feldman
    Integral Equations and Operator Theory, 2007, 58 : 153 - 173