Optimising Forest Management Using Multi-Objective Genetic Algorithms

被引:0
|
作者
Castro, Isabel [1 ,2 ]
Salas-Gonzalez, Raul [2 ,3 ]
Fidalgo, Beatriz [3 ]
Farinha, Jose Torres [1 ,2 ]
Mendes, Mateus [1 ,2 ,4 ]
机构
[1] Polytech Univ Coimbra, Coimbra Inst Engn, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[2] Polytech Univ Coimbra, Coimbra Inst Engn, RCM2, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[3] Polytech Univ Coimbra, Coimbra Agr Sch, P-3045601 Bencanta, Coimbra, Portugal
[4] Univ Coimbra, Inst Syst & Robot, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
forest management; optimization; Genetic Algorithm; multi-objective optimization; sustainability; Web integration; COMBINATORIAL OPTIMIZATION; CLIMATE-CHANGE;
D O I
10.3390/su162310655
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest management requires balancing ecological, economic, and social objectives, often involving complex optimisation problems. Traditional mathematical methods struggle with these challenges, leading to the adoption of metaheuristic approaches like the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This paper introduces a custom NSGA-II algorithm, incorporating a specialised mutation operator to enhance solution generation for multi-objective forest planning. The custom NSGA-II is compared to the standard NSGA-II in a scenario aiming to maximise timber harvest volume and minimise its standard deviation, with a minimum volume constraint. Key performance metrics include non-dominated solutions, spacing, computational cost, and hypervolume. The results demonstrate that the custom NSGA-II provides more valid solutions and better explores the solution space. This approach offers a user-friendly and efficient tool for forest managers, integrating well with Web-based systems for modern, sustainability-oriented forest planning.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] On the mining of fuzzy association rule using multi-objective genetic algorithms
    Kalia, Harihar
    Dehuri, Satchidananda
    Ghosh, Ashish
    Cho, Sung-Bae
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2016, 8 (01) : 1 - 31
  • [32] Optimization of Spectral Signatures Selection Using Multi-Objective Genetic Algorithms
    Awad, Mohamad M.
    De Jong, Kenneth
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1620 - 1627
  • [33] Multi-objective fuzzy assembly line balancing using genetic algorithms
    P. Th. Zacharia
    Andreas C. Nearchou
    Journal of Intelligent Manufacturing, 2012, 23 : 615 - 627
  • [34] Optimizing Service Selection Using Hybrid Multi-objective Genetic Algorithms
    Li, Bo
    Zhang, Changsheng
    Bai, Baoxing
    PROCEEDINGS OF THE 2015 3RD INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2015, 35 : 116 - 122
  • [35] Multi-objective global optimization of a butterfly valve using genetic algorithms
    Corbera, Sergio
    Luis Olazagoitia, Jose
    Antonio Lozano, Jose
    ISA TRANSACTIONS, 2016, 63 : 401 - 412
  • [36] Multi-objective design optimisation of rolling bearings using genetic algorithms
    Gupta, Shantanu
    Tiwari, Rajiv
    Nair, Shivashankar B.
    MECHANISM AND MACHINE THEORY, 2007, 42 (10) : 1418 - 1443
  • [37] Multi-objective Pareto Genetic Algorithms Using Fast Elite Updating
    Guo, Guanqi
    Tan, Zhumei
    Yang, Guanci
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 1323 - 1326
  • [38] Design of microvascular flow networks using multi-objective genetic algorithms
    Aragon, Alejandro M.
    Wayer, Jessica K.
    Geubelle, Philippe H.
    Goldberg, David E.
    White, Scott R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (49-50) : 4399 - 4410
  • [39] Hierarchical multi-objective group optimization using fuzzy genetic algorithms
    Nojiri, H
    INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 3, PROCEEDINGS, 2004, : 92 - 97
  • [40] MULTI-OBJECTIVE OPTIMIZATION OF ENSEMBLE OF REGRESSION TREES USING GENETIC ALGORITHMS
    Wan, Qian
    Pal, Ranadip
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 1356 - 1359