Optimising Forest Management Using Multi-Objective Genetic Algorithms

被引:0
|
作者
Castro, Isabel [1 ,2 ]
Salas-Gonzalez, Raul [2 ,3 ]
Fidalgo, Beatriz [3 ]
Farinha, Jose Torres [1 ,2 ]
Mendes, Mateus [1 ,2 ,4 ]
机构
[1] Polytech Univ Coimbra, Coimbra Inst Engn, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[2] Polytech Univ Coimbra, Coimbra Inst Engn, RCM2, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[3] Polytech Univ Coimbra, Coimbra Agr Sch, P-3045601 Bencanta, Coimbra, Portugal
[4] Univ Coimbra, Inst Syst & Robot, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
forest management; optimization; Genetic Algorithm; multi-objective optimization; sustainability; Web integration; COMBINATORIAL OPTIMIZATION; CLIMATE-CHANGE;
D O I
10.3390/su162310655
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest management requires balancing ecological, economic, and social objectives, often involving complex optimisation problems. Traditional mathematical methods struggle with these challenges, leading to the adoption of metaheuristic approaches like the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This paper introduces a custom NSGA-II algorithm, incorporating a specialised mutation operator to enhance solution generation for multi-objective forest planning. The custom NSGA-II is compared to the standard NSGA-II in a scenario aiming to maximise timber harvest volume and minimise its standard deviation, with a minimum volume constraint. Key performance metrics include non-dominated solutions, spacing, computational cost, and hypervolume. The results demonstrate that the custom NSGA-II provides more valid solutions and better explores the solution space. This approach offers a user-friendly and efficient tool for forest managers, integrating well with Web-based systems for modern, sustainability-oriented forest planning.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Parallelizing Multi-objective Evolutionary Genetic Algorithms
    Shinde, G. N.
    Jagtap, Sudhir B.
    Pani, Subhendu Kumar
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL II, 2011, : 1534 - 1537
  • [22] Multi-objective Genetic Algorithms for grouping problems
    Emin Erkan Korkmaz
    Applied Intelligence, 2010, 33 : 179 - 192
  • [23] Multi-objective Genetic Algorithms for grouping problems
    Korkmaz, Emin Erkan
    APPLIED INTELLIGENCE, 2010, 33 (02) : 179 - 192
  • [24] Optimising Antibiotic Treatments with Multi-objective Population-based Algorithms
    Goranova, Mila
    Contreras-Cruz, Marco A.
    Hoyle, Andrew
    Ochoa, Gabriela
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [25] Multi-objective optimization of aeroengine PID control based on multi-objective genetic algorithms
    Li, Yue
    Sun, Jian-Guo
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2008, 23 (01): : 174 - 178
  • [26] Optimizing Multiple Sequence Alignment using Multi-Objective Genetic Algorithms
    Yadav, Sohan Kumar
    Jha, Sudhanshu Kumar
    Singh, Sudhakar
    Dixit, Pratibha
    Prakash, Shiv
    Singh, Astha
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 113 - 117
  • [27] Multi-objective pareto optimization of centrifugal pump using genetic algorithms
    Nariman-Zadeh, N.
    Amanifard, N.
    Hajiloo, A.
    Ghalandari, P.
    Hoseinpoor, B.
    PROCEEDING OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS: COMPUTER SCIENCE AND TECHNOLOGY, VOL 4, 2007, : 135 - +
  • [28] An approach for optimizing multi-objective problems using hybrid genetic algorithms
    Ahmed Maghawry
    Rania Hodhod
    Yasser Omar
    Mohamed Kholief
    Soft Computing, 2021, 25 : 389 - 405
  • [29] Multi-objective fuzzy assembly line balancing using genetic algorithms
    Zacharia, P. Th.
    Nearchou, Andreas C.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2012, 23 (03) : 615 - 627
  • [30] Constrained multi-objective optimization using steady state genetic algorithms
    Chafekar, D
    Xuan, J
    Rasheed, K
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 813 - 824