Characterizations of Multivariate Implicit Dependence Copulas

被引:0
|
作者
Santiwipanont, Tippawan [1 ]
Sumetkijakan, Songkiat [1 ]
Yanpaisan, Noppawit [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
关键词
Implicit dependence copulas; Generalized markov product; Countably piecewise monotonic surjections; Conditional copulas;
D O I
10.1007/978-3-031-65993-5_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The copula C of continuously distributed random variables X-1,..., X-d is said to be an implicit dependence copula if there are Borel functions alpha(1),..., alpha(d) such that alpha(1)(X-1),..., alpha(d)(X-d) are equal almost surely and continuously distributed, that is their common distribution function is continuous. Bivariate implicit dependence copulas have recently been characterized in terms of a generalized Markov product. In this manuscript, the characterizations are extended to the multivariate case in terms of a product of d copulas, called A -product where A is a class of copulas At, t is an element of [0, 1]. The class of implicit dependence d-copulas are characterized as A -products of d complete dependence copulas. Explicit forms of the joining copulas A(t) are obtained when the functions ai are countably piecewise monotonic surjections.
引用
收藏
页码:440 / 448
页数:9
相关论文
共 50 条
  • [21] Multivariate simulation and multimodal dependence modeling of vehicle axle weights with copulas
    Srinivas, S.
    Menon, Devdas
    Prasad, A. Meher
    JOURNAL OF TRANSPORTATION ENGINEERING, 2006, 132 (12) : 945 - 955
  • [22] Multivariate copulas, quasi-copulas and lattices
    Fernandez-Sanchez, Juan
    Nelsen, Roger B.
    Ubeda-Flores, Manuel
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (09) : 1365 - 1369
  • [23] Multivariate Bertino copulas
    Garcia, J. J. Arias
    De Meyer, H.
    De Baets, B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1346 - 1364
  • [24] MULTIVARIATE COMPOSITE COPULAS
    Xie, Jiehua
    Fang, Jun
    Yang, Jingping
    Bu, Lan
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2022, 52 (01) : 145 - 184
  • [25] Multivariate Archimax copulas
    Charpentier, A.
    Fougeres, A. -L.
    Genest, C.
    Neslehova, J. G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 126 : 118 - 136
  • [26] On multivariate Gaussian copulas
    Zezula, Ivan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (11) : 3942 - 3946
  • [27] Large-sample tests of extreme-value dependence for multivariate copulas
    Kojadinovic, Ivan
    Segers, Johan
    Yan, Jun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 703 - 720
  • [28] WEIGHTED LEAST-SQUARES INFERENCE FOR MULTIVARIATE COPULAS BASED ON DEPENDENCE COEFFICIENTS
    Mazo, Gildas
    Girard, Stephane
    Forbes, Florence
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 746 - 765
  • [29] Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family
    Cooray, Kahadawala
    DEPENDENCE MODELING, 2018, 6 (01): : 1 - 18
  • [30] A class of multivariate copulas with bivariate Frechet marginal copulas
    Yang, Jingping
    Qi, Yongcheng
    Wang, Ruodu
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 139 - 147