Pointwise Sharp Moderate Deviations for a Kernel Density Estimator

被引:0
|
作者
Liu, Siyu [1 ]
Fan, Xiequan [1 ]
Hu, Haijuan [1 ]
Doukhan, Paul [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Peoples R China
[2] CY Univ, AGM UMR 8088, F-95000 St Martin Dheres, Cergy Pontoise, France
关键词
Cram & eacute; r moderate deviations; kernel density estimator; kernel function;
D O I
10.3390/math12203161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let fn be the non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random vectors taking values in Rd. With some mild conditions, we establish sharp moderate deviations for the kernel density estimator. This means that we provide an equivalent for the tail probabilities of this estimator.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A note on the behaviour of a kernel-smoothed kernel density estimator
    Janssen, Paul
    Swanepoel, Jan
    Veraverbeke, Noel
    STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [32] Large deviations principles for kernel density estimators
    Louani, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05): : 569 - 572
  • [33] Sharp pointwise gradient estimates for Riesz potentials with a bounded density
    Tkachev, Vladimir G.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 711 - 730
  • [34] A large deviations theorem for the projection method density estimator
    Bitouzé, D
    Louani, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05): : 441 - 444
  • [35] Sharp pointwise gradient estimates for Riesz potentials with a bounded density
    Vladimir G. Tkachev
    Analysis and Mathematical Physics, 2018, 8 : 711 - 730
  • [36] A kernel type nonparametric density estimator for decompounding
    Van Es, Bert
    Gugushvili, Shota
    Spreij, Peter
    BERNOULLI, 2007, 13 (03) : 672 - 694
  • [37] Maximum Kernel Density Estimator for robust fitting
    Wang, Hanzi
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3385 - 3388
  • [38] Kernel density estimator for strong mixing processes
    Kim, TY
    Lee, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 133 (02) : 273 - 284
  • [39] Consistency of the beta kernel density function estimator
    Bouezmarni, T
    Rolin, JM
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01): : 89 - 98
  • [40] Large and moderate deviations principles for kernel estimators of the multivariate regression
    Mokkadem A.
    Pelletier M.
    Thiam B.
    Mathematical Methods of Statistics, 2008, 17 (2) : 146 - 172