Induced saturation for complete bipartite posets

被引:0
|
作者
Liu, Dingyuan [1 ]
机构
[1] Karlsruhe Inst Technol, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Poset saturation; Complete bipartite posets;
D O I
10.1016/j.disc.2025.114462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given s, t E N, a complete bipartite poset Ks,t is a poset whose Hasse diagram consists of s pairwise incomparable vertices in the upper layer and t pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family F c 2[n] is called induced Ks,t-saturated if (F, c) contains no induced copy of Ks,t, whereas adding any set from 2[n]\F to F creates an induced Ks,t. Let sat & lowast;(n, Ks,t) denote the smallest size of an induced Ks,t-saturated family F c 2[n]. It was conjectured that sat & lowast;(n, Ks,t) is superlinear in n for certain values of sand t. In this paper, we show that sat & lowast;(n, Ks,t) = O(n) for all fixed s, t E N. Moreover, we prove a linear lower bound on sat & lowast;(n, P) for a large class of posets P, particularly for Ks,2 with s E N. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Complete Bipartite Ramsey Numbers
    Hasmawati
    Assiyatun, H.
    Baskoro, E. T.
    Salman, A. N. M.
    UTILITAS MATHEMATICA, 2009, 78 : 129 - 138
  • [42] Cospectrality of complete bipartite graphs
    Oboudi, Mohammad Reza
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12): : 2491 - 2497
  • [43] Decomposition of complete bipartite graphs
    VandenEynden, C
    ARS COMBINATORIA, 1997, 46 : 287 - 296
  • [44] Perfect sequences of chain-complete posets
    Farley, Jonathan David
    Discrete Mathematics, 1997, 167-168 : 271 - 296
  • [45] Algebraic fuzzy directed-complete posets
    Shuhua Su
    Qingguo Li
    Neural Computing and Applications, 2012, 21 : 255 - 265
  • [46] Perfect sequences of chain-complete posets
    Farley, JD
    DISCRETE MATHEMATICS, 1997, 167 : 271 - 296
  • [47] Algebraic fuzzy directed-complete posets
    Su, Shuhua
    Li, Qingguo
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 : S255 - S265
  • [48] HOMOMORPHISMS OF INFINITE BIPARTITE GRAPHS ONTO COMPLETE BIPARTITE GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1983, 33 (04) : 545 - 547
  • [49] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [50] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Bernardo Ábrego
    Silvia Fernández-Merchant
    Athena Sparks
    Graphs and Combinatorics, 2020, 36 : 205 - 220