Cospectrality of complete bipartite graphs

被引:15
|
作者
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 12期
关键词
spectra of graphs; measures on spectra of graphs; cospectrality of graphs; the adjacency matrix of a graph; complete bipartite graphs; SPECTRA;
D O I
10.1080/03081087.2016.1162133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Richard Brualdi proposed in [Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 2007; 423: 172-181] the following problem: (Problem AWGS. 4) Let G(n) and G'(n) be two non-isomorphic graphs on n vertices with spectra. lambda(1) >= lambda(2) >= ... >= lambda(n) and lambda'(1) >= lambda'(2) >= lambda'(n,) respectively. Define the distance between the spectra of G(n) and G'(n) as.(G(n), G'(n)) = n i= 1 (.i -. i) 2.. or use n i= 1 |.i -. i |... Define the cospectrality of Gn by cs(G(n)) = min{.(Gn, G'(n)) : G'(n) not isomorphic to G(n)}. Let csn = max{cs(G(n)) : Gn a graph on n vertices}. Problem A Investigate cs(G(n)) for special classes of graphs. Problem B Find a good upper bound on csn. In this paper, we study ProblemAand determine the cospectrality of all complete bipartite graphs by the Euclidian distance. More precisely, we show that for all positive integers m and n there are some positive integers r, s and a non-negative integer t such that cs(Km, n) =.(Km, n, Kr, s+ tK1), where Km, n is the complete bipartite graph with parts of sizes m and n.
引用
下载
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条