Transport noise restores uniqueness and prevents blow-up in geometric transport equations

被引:0
|
作者
de Leon, Aythami Bethencourt [1 ,4 ]
Takao, So [2 ,3 ,4 ]
机构
[1] Univ La Laguna, Dept Math Stat & Operat Res, San Cristobal De La Lagun 38206, Spain
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[3] UCL, UCL Ctr Artificial Intelligence, London WC1V 6BH, England
[4] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Well-posedness by noise; Transport noise; Stochastic Lie transport equations; Blow-up prevention; Stochastic flows; Geometric mechanics; STOCHASTIC CONTINUITY EQUATIONS; DIFFERENTIAL FORMS; REGULARIZATION; ITO;
D O I
10.1007/s40072-024-00339-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we demonstrate well-posedness and regularisation by noise results for a class of geometric transport equations that contains, among others, the linear transport and continuity equations. This class is known as linear advection of k-forms. In particular, we prove global existence and uniqueness of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions to the stochastic equation, driven by a spatially alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-H & ouml;lder drift b, uniformly bounded in time, with an integrability condition on the distributional derivative of b, and sufficiently regular diffusion vector fields. Furthermore, we prove that all our solutions are continuous if the initial datum is continuous. Finally, we show that our class of equations without noise admits infinitely many Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions and is hence ill-posed. Moreover, the deterministic solutions can be discontinuous in both time and space independently of the regularity of the initial datum. We also demonstrate that for certain initial data of class C0 infinity,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>\infty _{0},$$\end{document} the deterministic Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions blow up instantaneously in the space Lloc infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }_{loc}$$\end{document}. In order to establish our results, we employ characteristics-based techniques that exploit the geometric structure of our equations.
引用
收藏
页数:95
相关论文
共 50 条