Transport noise restores uniqueness and prevents blow-up in geometric transport equations

被引:0
|
作者
de Leon, Aythami Bethencourt [1 ,4 ]
Takao, So [2 ,3 ,4 ]
机构
[1] Univ La Laguna, Dept Math Stat & Operat Res, San Cristobal De La Lagun 38206, Spain
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[3] UCL, UCL Ctr Artificial Intelligence, London WC1V 6BH, England
[4] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Well-posedness by noise; Transport noise; Stochastic Lie transport equations; Blow-up prevention; Stochastic flows; Geometric mechanics; STOCHASTIC CONTINUITY EQUATIONS; DIFFERENTIAL FORMS; REGULARIZATION; ITO;
D O I
10.1007/s40072-024-00339-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we demonstrate well-posedness and regularisation by noise results for a class of geometric transport equations that contains, among others, the linear transport and continuity equations. This class is known as linear advection of k-forms. In particular, we prove global existence and uniqueness of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions to the stochastic equation, driven by a spatially alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-H & ouml;lder drift b, uniformly bounded in time, with an integrability condition on the distributional derivative of b, and sufficiently regular diffusion vector fields. Furthermore, we prove that all our solutions are continuous if the initial datum is continuous. Finally, we show that our class of equations without noise admits infinitely many Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions and is hence ill-posed. Moreover, the deterministic solutions can be discontinuous in both time and space independently of the regularity of the initial datum. We also demonstrate that for certain initial data of class C0 infinity,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>\infty _{0},$$\end{document} the deterministic Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions blow up instantaneously in the space Lloc infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }_{loc}$$\end{document}. In order to establish our results, we employ characteristics-based techniques that exploit the geometric structure of our equations.
引用
收藏
页数:95
相关论文
共 50 条
  • [21] Noise prevents singularities in linear transport equations
    Fedrizzi, E.
    Flandoli, F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1329 - 1354
  • [22] Remarks on uniqueness of boundary blow-up solutions
    Guo, Zongming
    Shang, Junli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 484 - 497
  • [23] MEAN FIELD EQUATIONS ON TORI: EXISTENCE AND UNIQUENESS OF EVENLY SYMMETRIC BLOW-UP SOLUTIONS
    Bartolucci, Daniele
    Gui, Changfeng
    Hu, Yeyao
    Jevnikar, Aleks
    Yang, Wen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3093 - 3116
  • [24] Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations
    Marcus, M
    Veron, L
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02): : 237 - 274
  • [25] Existence, uniqueness, and blow-up rate of large solutions to equations involving the ∞-Laplacian on the half
    Chen, Yujuan
    Chen, Li
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4577 - 4594
  • [26] BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS
    D'Ancona, Piero
    Nicaise, Serge
    Schnaubelt, Roland
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [27] Boundary blow-up and degenerate equations
    Kichenassamy, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (02) : 271 - 289
  • [28] Blow-up in nonlinear heat equations
    Dejak, Steven
    Gang, Zhou
    Sigal, Israel Michael
    Wang, Shuangcai
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (04) : 433 - 481
  • [29] On blow-up of solution for Euler equations
    Behr, E
    Necas, J
    Wu, HY
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (02): : 229 - 238
  • [30] Uniqueness and blow-up for a stochastic viscous dyadic model
    Marco Romito
    Probability Theory and Related Fields, 2014, 158 : 895 - 924