A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:0
|
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; IDENTIFICATION; AUTOENCODER; ATTENTION;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion
    Yadang C.
    Liuren C.
    Wenbin Y.
    Jiale Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10): : 1542 - 1549
  • [32] Enhancing industrial anomaly detection with Mamba-inspired feature fusion
    Pei, Mingjing
    Zhou, Xiancun
    Huang, Yourui
    Zhang, Fenghui
    Pei, Mingli
    Yang, Yadong
    Zheng, Shijian
    Xin, Mai
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2025, 107
  • [33] Hierarchical Feature Fusion based Reconstruction Network for Unsupervised Anomaly Detection
    Zhao, Binjie
    Nie, Jiahao
    Guan, Siwei
    Wang, Han
    He, Zhiwei
    Gao, Mingyu
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [34] IoVST: An anomaly detection method for IoV based on spatiotemporal feature fusion
    Cao, Jinhui
    Di, Xiaoqiang
    Li, Jinqing
    Yu, Keping
    Zhao, Liang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 166
  • [35] Multisource Multimodal Feature Fusion for Small Leak Detection in Gas Pipelines
    Yan, Wendi
    Liu, Wei
    Zhang, Qiao
    Bi, Hongbo
    Jiang, Chunlei
    Liu, Haixu
    Wang, Tao
    Dong, Taiji
    Ye, Xiaohui
    IEEE SENSORS JOURNAL, 2024, 24 (02) : 1857 - 1865
  • [36] FSFM: A Feature Square Tower Fusion Module for Multimodal Object Detection
    Liu, Xiaomin
    Zhu, Chen
    Yang, Chunyu
    Zhou, Linna
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [37] MFFFLD: A Multimodal-Feature-Fusion-Based Fingerprint Liveness Detection
    Yuan, Chengsheng
    Jiao, Shengming
    Sun, Xingming
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (02) : 648 - 661
  • [38] Multimedia event detection with multimodal feature fusion and temporal concept localization
    Oh, Sangmin
    McCloskey, Scott
    Kim, Ilseo
    Vahdat, Arash
    Cannons, Kevin J.
    Hajimirsadeghi, Hossein
    Mori, Greg
    Perera, A. G. Amitha
    Pandey, Megha
    Corso, Jason J.
    MACHINE VISION AND APPLICATIONS, 2014, 25 (01) : 49 - 69
  • [39] DETECTION IN COMPLEX SCENES USING RGB AND DEPTH MULTIMODAL FEATURE FUSION
    Yan, Shengli
    Rao, Yuan
    Hou, Wenhui
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 2495 - 2499
  • [40] Multimedia event detection with multimodal feature fusion and temporal concept localization
    Sangmin Oh
    Scott McCloskey
    Ilseo Kim
    Arash Vahdat
    Kevin J. Cannons
    Hossein Hajimirsadeghi
    Greg Mori
    A. G. Amitha Perera
    Megha Pandey
    Jason J. Corso
    Machine Vision and Applications, 2014, 25 : 49 - 69