A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:0
|
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; IDENTIFICATION; AUTOENCODER; ATTENTION;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Series Arc Fault Detection Based on Multimodal Feature Fusion
    Qu, Na
    Wei, Wenlong
    Hu, Congqiang
    SENSORS, 2023, 23 (17)
  • [22] Multimodal Machine Translation Based on Enhanced Knowledge Distillation and Feature Fusion
    Tian, Erlin
    Zhu, Zengchao
    Liu, Fangmei
    Li, Zuhe
    Gu, Ran
    Zhao, Shuai
    ELECTRONICS, 2024, 13 (15)
  • [23] Position Encoding Enhanced Feature Mapping for Image Anomaly Detection
    Wan, Qian
    Cao, Yunkang
    Gao, Liang
    Shen, Weiming
    Li, Xinyu
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 876 - 881
  • [24] A Multimodal Framework for Unsupervised Feature Fusion
    Li, Xiaoyi
    Gao, Jing
    Li, Hui
    Yang, Le
    Srihari, Rohini K.
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 897 - 902
  • [25] Multimodal feature fusion for concreteness estimation
    Incitti, Francesca
    Snidaro, Lauro
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [26] MFFA: Multi-level feature fusion and anomaly map compensation for anomaly detection
    Zhang, Ruifan
    Wang, Hao
    Yang, Gongping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 7195 - 7210
  • [27] Enhanced Multimodal Fake News Detection with Optimal Feature Fusion and Modified Bi-LSTM Architecture
    Kishore, Vikash
    Kumar, Mukesh
    CYBERNETICS AND SYSTEMS, 2023,
  • [28] Ship trajectory anomaly detection based on multi-feature fusion
    Huang, Guanbin
    Lai, Shanyan
    Ye, Chunyang
    Zhou, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON SMART DATA SERVICES (SMDS 2021), 2021, : 72 - 81
  • [29] Anomaly Detection of GAN Industrial Image Based on Attention Feature Fusion
    Zhang, Lin
    Dai, Yang
    Fan, Fuyou
    He, Chunlin
    SENSORS, 2023, 23 (01)
  • [30] Data and Feature Fusion Approaches for Anomaly Detection in Polarimetric Hyperspectral Imagery
    Bihl, Trevor J.
    Martin, Jacob A.
    Gross, Kevin C.
    Bauer, Kenneth W.
    PROCEEDINGS OF THE 2021 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2021, : 157 - 163