A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:0
|
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; IDENTIFICATION; AUTOENCODER; ATTENTION;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multimodal and multiscale feature fusion for weakly supervised video anomaly detection
    Sun, Wenwen
    Cao, Lin
    Guo, Yanan
    Du, Kangning
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Multimodal Attention-Enhanced Feature Fusion-Based Weakly Supervised Anomaly Violence Detection
    Shin, Jungpil
    Miah, Abu Saleh Musa
    Kaneko, Yuta
    Hassan, Najmul
    Lee, Hyoun-Sup
    Jang, Si-Woong
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2025, 6 : 129 - 140
  • [3] FusionNN: A Semantic Feature Fusion Model Based on Multimodal for Web Anomaly Detection
    Wang, Li
    Xia, Mingshan
    Hu, Hao
    Li, Jianfang
    Hou, Fengyao
    Chen, Gang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2991 - 3006
  • [4] ANOMALY DETECTION IN CROWDS BY FUSION OF NOVEL FEATURE DESCRIPTORS
    Alzahrani, Abdullah J.
    Khan, Sultan Daud
    Ullah, Habib
    INTERNATIONAL TRANSACTION JOURNAL OF ENGINEERING MANAGEMENT & APPLIED SCIENCES & TECHNOLOGIES, 2020, 11 (16):
  • [5] Multimodal Hierarchical CNN Feature Fusion for Stress Detection
    Kuttala, Radhika
    Subramanian, Ramanathan
    Oruganti, Venkata Ramana Murthy
    IEEE ACCESS, 2023, 11 : 6867 - 6878
  • [6] Weakly Aligned Feature Fusion for Multimodal Object Detection
    Zhang, Lu
    Liu, Zhiyong
    Zhu, Xiangyu
    Song, Zhan
    Yang, Xu
    Lei, Zhen
    Qiao, Hong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021,
  • [7] Multimodal Feature Adaptive Fusion for Fake News Detection
    Wang, Teng
    Zhang, Dawei
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2024, 60 (13) : 102 - 111
  • [8] Complementary pseudo multimodal feature for point cloud anomaly detection
    Cao, Yunkang
    Xu, Xiaohao
    Shen, Weiming
    PATTERN RECOGNITION, 2024, 156
  • [9] Object Detection via Multimodal Adaptive Feature Fusion
    Gao Xiaoqiang
    Chang Kan
    Ling Mingyang
    Yin Mengyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [10] EFAFN: An Efficient Feature Adaptive Fusion Network with Facial Feature for Multimodal Sarcasm Detection
    Sun, Yukuan
    Zhang, Hangming
    Yang, Shengjiao
    Wang, Jianming
    APPLIED SCIENCES-BASEL, 2022, 12 (21):