Delving Deep into Simplicity Bias for Long-Tailed Image Recognition

被引:0
|
作者
Wei, Xiu-Shen [1 ]
Sun, Xuhao [2 ]
Shen, Yang [2 ]
Wang, Peng [3 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Key Lab New Generat Artif Intelligence Technol & I, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Nanjing, Peoples R China
[3] Univ Elect Sci & Technol China, Chengdu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Long-tailed image recognition; Simplicity bias; Deep learning; Self-supervised learning;
D O I
10.1007/s11263-024-02342-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simplicity Bias (SB) is a phenomenon that deep neural networks tend to rely favorably on simpler predictive patterns but ignore some complex features when applied to supervised discriminative tasks. In this work, we investigate SB in long-tailed image recognition and find the tail classes suffer more severely from SB, which harms the generalization performance of such underrepresented classes. We empirically report that self-supervised learning (SSL) can mitigate SB and perform in complementary to the supervised counterpart by enriching the features extracted from tail samples and consequently taking better advantage of such rare samples. However, standard SSL methods are designed without explicitly considering the inherent data distribution in terms of classes and may not be optimal for long-tailed distributed data. To address this limitation, we propose a novel SSL method tailored to imbalanced data. It leverages SSL by triple diverse levels, i.e., holistic-, partial-, and augmented-level, to enhance the learning of predictive complex patterns, which provides the potential to overcome the severe SB on tail data. Both quantitative and qualitative experimental results on five long-tailed benchmark datasets show our method can effectively mitigate SB and significantly outperform the competing state-of-the-arts.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Normalizing Batch Normalization for Long-Tailed Recognition
    Bao, Yuxiang
    Kang, Guoliang
    Yang, Linlin
    Duan, Xiaoyue
    Zhao, Bo
    Zhang, Baochang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 209 - 220
  • [32] Federated deep long-tailed learning: A survey
    Li, Kan
    Li, Yang
    Zhang, Ji
    Liu, Xin
    Ma, Zhichao
    NEUROCOMPUTING, 2024, 595
  • [33] Class-Conditional Sharpness-Aware Minimization for Deep Long-Tailed Recognition
    Zhou, Zhipeng
    Li, Lanqing
    Zhao, Peilin
    Heng, Pheng-Ann
    Gong, Wei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3499 - 3509
  • [34] Class-Balanced Regularization for Long-Tailed Recognition
    Xu, Yuge
    Lyu, Chuanlong
    NEURAL PROCESSING LETTERS, 2024, 56 (03)
  • [35] Feature fusion network for long-tailed visual recognition
    Zhou, Xuesong
    Zhai, Junhai
    Cao, Yang
    PATTERN RECOGNITION, 2023, 144
  • [36] Balanced Product of Calibrated Experts for Long-Tailed Recognition
    Aimar, Emanuel Sanchez
    Jonnarth, Arvi
    Felsberg, Michael
    Kuhlmann, Marco
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19967 - 19977
  • [37] Exploiting the Tail Data for Long-Tailed Face Recognition
    Song, Guo
    Liu, Rujie
    Wang, Mengjiao
    Meng, Zhang
    Nie, Shijie
    Lina, Septiana
    Abe, Narishige
    IEEE ACCESS, 2022, 10 : 97945 - 97953
  • [38] Disentangling Label Distribution for Long-tailed Visual Recognition
    Hong, Youngkyu
    Han, Seungju
    Choi, Kwanghee
    Seo, Seokjun
    Kim, Beomsu
    Chang, Buru
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6622 - 6632
  • [39] Enhanced Long-Tailed Recognition With Contrastive CutMix Augmentation
    Pan, Haolin
    Guo, Yong
    Yu, Mianjie
    Chen, Jian
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4215 - 4230
  • [40] Attentive Feature Augmentation for Long-Tailed Visual Recognition
    Wang, Weiqiu
    Zhao, Zhicheng
    Wang, Pingyu
    Su, Fei
    Meng, Hongying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 5803 - 5816