Delving Deep into Simplicity Bias for Long-Tailed Image Recognition

被引:0
|
作者
Wei, Xiu-Shen [1 ]
Sun, Xuhao [2 ]
Shen, Yang [2 ]
Wang, Peng [3 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Key Lab New Generat Artif Intelligence Technol & I, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Nanjing, Peoples R China
[3] Univ Elect Sci & Technol China, Chengdu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Long-tailed image recognition; Simplicity bias; Deep learning; Self-supervised learning;
D O I
10.1007/s11263-024-02342-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simplicity Bias (SB) is a phenomenon that deep neural networks tend to rely favorably on simpler predictive patterns but ignore some complex features when applied to supervised discriminative tasks. In this work, we investigate SB in long-tailed image recognition and find the tail classes suffer more severely from SB, which harms the generalization performance of such underrepresented classes. We empirically report that self-supervised learning (SSL) can mitigate SB and perform in complementary to the supervised counterpart by enriching the features extracted from tail samples and consequently taking better advantage of such rare samples. However, standard SSL methods are designed without explicitly considering the inherent data distribution in terms of classes and may not be optimal for long-tailed distributed data. To address this limitation, we propose a novel SSL method tailored to imbalanced data. It leverages SSL by triple diverse levels, i.e., holistic-, partial-, and augmented-level, to enhance the learning of predictive complex patterns, which provides the potential to overcome the severe SB on tail data. Both quantitative and qualitative experimental results on five long-tailed benchmark datasets show our method can effectively mitigate SB and significantly outperform the competing state-of-the-arts.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Unequal-training for Deep Face Recognition with Long-tailed Noisy Data
    Zhong, Yaoyao
    Deng, Weihong
    Wang, Mei
    Hu, Jiani
    Peng, Jianteng
    Tao, Xunqiang
    Huang, Yaohai
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7804 - 7813
  • [22] Learning Prototype Classifiers for Long-Tailed Recognition
    Sharma, Saurabh
    Xian, Yongqin
    Yu, Ning
    Singh, Ambuj
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1360 - 1368
  • [23] ResLT: Residual Learning for Long-Tailed Recognition
    Cui, Jiequan
    Liu, Shu
    Tian, Zhuotao
    Zhong, Zhisheng
    Jia, Jiaya
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3695 - 3706
  • [24] Long-Tailed Recognition via Weight Balancing
    Alshammari, Shaden
    Wang, Yu-Xiong
    Ramanan, Deva
    Kong, Shu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6887 - 6897
  • [25] Equalization Loss for Long-Tailed Object Recognition
    Tan, Jingru
    Wang, Changbao
    Li, Buyu
    Li, Quanquan
    Ouyang, Wanli
    Yin, Changqing
    Yan, Junjie
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 11659 - 11668
  • [26] Decoupled Optimisation for Long-Tailed Visual Recognition
    Cong, Cong
    Xuan, Shiyu
    Liu, Sidong
    Zhang, Shiliang
    Pagnucco, Maurice
    Song, Yang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1380 - 1388
  • [27] Decoupled Contrastive Learning for Long-Tailed Recognition
    Xuan, Shiyu
    Zhang, Shiliang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6396 - 6403
  • [28] LTB-Solver: Long-tailed Bias Solver for image synthesis of diffusion models
    Fu, Siming
    He, Xiaoxuan
    Hu, Haoji
    NEUROCOMPUTING, 2025, 634
  • [29] Distilling Virtual Examples for Long-tailed Recognition
    He, Yin-Yin
    Wu, Jianxin
    Wei, Xiu-Shen
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 235 - 244
  • [30] Open Long-Tailed Recognition in a Dynamic World
    Liu, Ziwei
    Miao, Zhongqi
    Zhan, Xiaohang
    Wang, Jiayun
    Gong, Boqing
    Yu, Stella X.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1836 - 1851