Intrinsic Hölder spaces for fractional kinetic operators

被引:0
|
作者
Manfredini, Maria [1 ]
Pagliarani, Stefano [2 ]
Polidoro, Sergio [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Modena, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
Fractional kinetic operators; Taylor formula; Kolmogorov operators; H & ouml; rmander's condition; lder spaces; TAYLOR FORMULA;
D O I
10.1007/s00028-025-01062-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce anisotropic H & ouml;lder spaces that are useful for studying the regularity theory for non-local kinetic operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document}, whose prototypical example is Lu(t,x,v)=integral RdCd,s|v-v '|d+2s(u(t,x,v ')-u(t,x,v))dv '+< v,del x >+partial derivative t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathscr {L}u (t,x,v) = \int _{{{\mathbb {R}}}<^>d} \frac{C_{d,s}}{|v - v'|<^>{d+2s}} (u(t,x,v') - u(t,x,v)) \textrm{d}v' + \langle v, \nabla _x \rangle + \partial _t, \end{aligned}$$\end{document}with (t,x,v)is an element of RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,x,v)\in {{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}. The H & ouml;lder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}, with respect to which the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document} is invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Many parameter Hölder perturbation of unbounded operators
    Andreas Kriegl
    Peter W. Michor
    Armin Rainer
    Mathematische Annalen, 2012, 353 : 519 - 522
  • [42] Hölder kernel estimates for Robin operators and Dirichlet-to-Neumann operators
    A. F. M. ter Elst
    M. F. Wong
    Journal of Evolution Equations, 2020, 20 : 1195 - 1225
  • [43] GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND FRACTIONAL MAXIMAL OPERATORS IN THE FRAMEWORK OF MORREY SPACES
    Sawano, Yoshihiro
    Sugano, Satoko
    Tanaka, Hitoshi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6481 - 6503
  • [44] Equiconvergence theorems in Sobolev and Hölder spaces of eigenfunction expansions for Sturm-Liouville operators with singular potentials
    I. V. Sadovnichaya
    Doklady Mathematics, 2011, 83 : 169 - 170
  • [45] Hölder Quasicontinuity in Variable Exponent Sobolev Spaces
    Petteri Harjulehto
    Juha Kinnunen
    Katja Tuhkanen
    Journal of Inequalities and Applications, 2007
  • [46] Integration of Hölder forms and currents in snowflake spaces
    Roger Züst
    Calculus of Variations and Partial Differential Equations, 2011, 40 : 99 - 124
  • [47] Convergence of Rothe's Method in Hölder Spaces
    N. Kikuchi
    J. Kačur
    Applications of Mathematics, 2003, 48 (5) : 353 - 365
  • [48] The Fractional Operators on Weighted Morrey Spaces
    Nakamura, Shohei
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1502 - 1524
  • [49] FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES
    Gunawan, H.
    Sawano, Y.
    Sihwaningrum, I.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) : 324 - 334
  • [50] Fractional integral operators on -modulation spaces
    Zhao, Guoping
    Fan, Dashan
    Guo, Weichao
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (10) : 1288 - 1300