Intrinsic Hölder spaces for fractional kinetic operators

被引:0
|
作者
Manfredini, Maria [1 ]
Pagliarani, Stefano [2 ]
Polidoro, Sergio [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Modena, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
Fractional kinetic operators; Taylor formula; Kolmogorov operators; H & ouml; rmander's condition; lder spaces; TAYLOR FORMULA;
D O I
10.1007/s00028-025-01062-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce anisotropic H & ouml;lder spaces that are useful for studying the regularity theory for non-local kinetic operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document}, whose prototypical example is Lu(t,x,v)=integral RdCd,s|v-v '|d+2s(u(t,x,v ')-u(t,x,v))dv '+< v,del x >+partial derivative t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathscr {L}u (t,x,v) = \int _{{{\mathbb {R}}}<^>d} \frac{C_{d,s}}{|v - v'|<^>{d+2s}} (u(t,x,v') - u(t,x,v)) \textrm{d}v' + \langle v, \nabla _x \rangle + \partial _t, \end{aligned}$$\end{document}with (t,x,v)is an element of RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,x,v)\in {{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}. The H & ouml;lder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}, with respect to which the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document} is invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] ON FRACTIONAL OPERATORS IN STUMMEL SPACES
    Almeida, Alexandre
    Rafeiro, Humberto
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (03) : 487 - 490
  • [32] Fractal surfaces in Hölder and Sobolev spaces
    Ekta Agrawal
    Saurabh Verma
    The Journal of Analysis, 2024, 32 : 1161 - 1179
  • [33] Pseudo-Differential Operators in Hölder Spaces Revisited: Weyl–Hörmander Calculus and Ruzhansky–Turunen Classes
    Duván Cardona
    Mediterranean Journal of Mathematics, 2019, 16
  • [34] Optimal Problems on Hölder Function Spaces
    M. I. Zelikin
    Journal of Mathematical Sciences, 2004, 121 (2) : 2265 - 2280
  • [35] Hölder type inequalities in Lorentz spaces
    Viktor Kolyada
    Javier Soria
    Annali di Matematica Pura ed Applicata, 2010, 189 : 523 - 538
  • [36] On the Banach algebra of integral-variation type Hölder spaces and quadratic fractional integral equations
    Mieczysław Cichoń
    Mohamed M. A. Metwali
    Banach Journal of Mathematical Analysis, 2022, 16
  • [37] Hölder mappings of Carnot groups and intrinsic bases
    M. B. Karmanova
    Doklady Mathematics, 2017, 95 : 1 - 4
  • [38] On the Equivalence between Differential and Integral Forms of Caputo-Type Fractional Problems on Hölder Spaces
    Cichon, Mieczyslaw
    Salem, Hussein A. H.
    Shammakh, Wafa
    MATHEMATICS, 2024, 12 (17)
  • [39] Hölder regularity for the fractional p-Laplacian
    Cassanello, Filippo Maria
    Duzgun, Fatma Gamze
    Iannizzotto, Antonio
    ADVANCES IN CALCULUS OF VARIATIONS, 2025,
  • [40] On a reverse Hölder inequality for Schrödinger operators
    Seongyeon Kim
    Ihyeok Seo
    Archiv der Mathematik, 2022, 118 : 195 - 204