Intrinsic Hölder spaces for fractional kinetic operators

被引:0
|
作者
Manfredini, Maria [1 ]
Pagliarani, Stefano [2 ]
Polidoro, Sergio [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Modena, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
Fractional kinetic operators; Taylor formula; Kolmogorov operators; H & ouml; rmander's condition; lder spaces; TAYLOR FORMULA;
D O I
10.1007/s00028-025-01062-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce anisotropic H & ouml;lder spaces that are useful for studying the regularity theory for non-local kinetic operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document}, whose prototypical example is Lu(t,x,v)=integral RdCd,s|v-v '|d+2s(u(t,x,v ')-u(t,x,v))dv '+< v,del x >+partial derivative t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathscr {L}u (t,x,v) = \int _{{{\mathbb {R}}}<^>d} \frac{C_{d,s}}{|v - v'|<^>{d+2s}} (u(t,x,v') - u(t,x,v)) \textrm{d}v' + \langle v, \nabla _x \rangle + \partial _t, \end{aligned}$$\end{document}with (t,x,v)is an element of RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,x,v)\in {{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}. The H & ouml;lder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}, with respect to which the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document} is invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
引用
收藏
页数:22
相关论文
共 50 条