Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity

被引:0
|
作者
Younes, Bidi [1 ,2 ]
Beniani, Abderrahmane [3 ]
Zennir, Khaled [4 ]
Hajjej, Zayd [5 ]
Zhang, Hongwei [6 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Coll Sci, Dept Math, BP 89, Sidi Bel Abbes 22000, Algeria
[2] Univ Ain Temouchent, Ecole Normale Super Laghouat, Lab Math Pures & Appl, Ain Temouchent 46000, Algeria
[3] Univ Ain Temouchent, Fac Sci & Technol, Engn & Sustainable Dev Lab, Ain Temouchent 46000, Algeria
[4] Univ 20 Aout 1955 Skikda, Fac Sci, Dept Math, Skikda 21000, Algeria
[5] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[6] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 09期
关键词
fractional Laplacian; differential ff erential equations; global existence; partial differential ff erential equations; logarithmic nonlinearity; Galerkin approximations; EXISTENCE; SYSTEM;
D O I
10.3934/era.2024243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the global existence for a wave equation involving the fractional Laplacian with a logarithmic nonlinear source by using the Galerkin approximations. The corresponding results for equations with classical Laplacian are considered as particular cases of our assertions.
引用
收藏
页码:5268 / 5286
页数:19
相关论文
共 50 条
  • [41] Blow-Up of Solutions for Wave Equation Involving the Fractional Laplacian with Nonlinear Source
    Bidi, Y.
    Beniani, A.
    Alnegga, M. Y.
    Moumen, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [42] Existence and multiplicity of solutions for p-Laplacian fractional system with logarithmic nonlinearity
    Carlos, Romulo D.
    de Oliveira, Victor C.
    Miyagaki, Olimpio H.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2025, (02) : 1 - 32
  • [43] Global Existence and Blow-Up for the Pseudo-parabolic p(x)-Laplacian Equation with Logarithmic Nonlinearity
    Zeng, Fugeng
    Deng, Qigang
    Wang, Dongxiu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (01) : 41 - 57
  • [44] SYMMETRY BREAKING FOR AN ELLIPTIC EQUATION INVOLVING THE FRACTIONAL LAPLACIAN
    De Napoli, Pablo L.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (1-2) : 75 - 94
  • [45] Topological arguments for an elliptic equation involving the fractional Laplacian
    Al-Ghamdi, Mohammed Ali
    Abdelhedi, Wael
    Chtioui, Hichem
    BOUNDARY VALUE PROBLEMS, 2014,
  • [46] Multiplicity of Solutions for a Fractional Laplacian Equation Involving a Perturbation
    Z. Guo
    Y. Deng
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2021, 56 : 375 - 385
  • [47] Parabolic logistic equation with harvesting involving the fractional Laplacian
    Chhetri, Maya
    Girg, Petr
    Hollifield, Elliott
    Kotrla, Lukas
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (06):
  • [48] Global Existence and Blow-Up for the Pseudo-parabolic p(x)-Laplacian Equation with Logarithmic Nonlinearity
    Fugeng Zeng
    Qigang Deng
    Dongxiu Wang
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 41 - 57
  • [49] Multiplicity of Solutions for a Fractional Laplacian Equation Involving a Perturbation
    Guo, Z.
    Deng, Y.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (06): : 375 - 385
  • [50] Topological arguments for an elliptic equation involving the fractional Laplacian
    Mohammed Ali Al-Ghamdi
    Wael Abdelhedi
    Hichem Chtioui
    Boundary Value Problems, 2014 (1)