Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity

被引:0
|
作者
Younes, Bidi [1 ,2 ]
Beniani, Abderrahmane [3 ]
Zennir, Khaled [4 ]
Hajjej, Zayd [5 ]
Zhang, Hongwei [6 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Coll Sci, Dept Math, BP 89, Sidi Bel Abbes 22000, Algeria
[2] Univ Ain Temouchent, Ecole Normale Super Laghouat, Lab Math Pures & Appl, Ain Temouchent 46000, Algeria
[3] Univ Ain Temouchent, Fac Sci & Technol, Engn & Sustainable Dev Lab, Ain Temouchent 46000, Algeria
[4] Univ 20 Aout 1955 Skikda, Fac Sci, Dept Math, Skikda 21000, Algeria
[5] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[6] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 09期
关键词
fractional Laplacian; differential ff erential equations; global existence; partial differential ff erential equations; logarithmic nonlinearity; Galerkin approximations; EXISTENCE; SYSTEM;
D O I
10.3934/era.2024243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the global existence for a wave equation involving the fractional Laplacian with a logarithmic nonlinear source by using the Galerkin approximations. The corresponding results for equations with classical Laplacian are considered as particular cases of our assertions.
引用
收藏
页码:5268 / 5286
页数:19
相关论文
共 50 条
  • [21] Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity
    Chen, Hua
    Luo, Peng
    Liu, Gongwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 84 - 98
  • [22] THE CHOQUARD LOGARITHMIC EQUATION INVOLVING A NONLINEARITY WITH EXPONENTIAL GROWTH
    Boer, Eduardo de S.
    Miyagaki, Olimpio H.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (01) : 363 - 385
  • [23] On a singular parabolic p-Laplacian equation with logarithmic nonlinearity
    Wu, Xiulan
    Zhao, Yanxin
    Yang, Xiaoxin
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 528 - 553
  • [24] On the Gaussian traveling wave solution to a special kind of Schrodinger equation with logarithmic nonlinearity
    Kai, Yue
    Yin, Zhixiang
    MODERN PHYSICS LETTERS B, 2022, 36 (02):
  • [25] Ground states for Schrodinger-Kirchhoff equations of fractional p-Laplacian involving logarithmic and critical nonlinearity
    Lv, Huilin
    Zheng, Shenzhou
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 111
  • [26] Ground states for Schrödinger–Kirchhoff equations of fractional p-Laplacian involving logarithmic and critical nonlinearity
    Lv, Huilin
    Zheng, Shenzhou
    Communications in Nonlinear Science and Numerical Simulation, 2022, 111
  • [27] Multiplicity of solutions for a scalar field equation involving a fractional p-Laplacian with general nonlinearity
    Bueno, H. P.
    Miyagaki, O. H.
    Vieira, A. L.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (12) : 2066 - 2089
  • [28] Fractional viscoelastic equation of kirchhoff type with logarithmic nonlinearity
    Lapa E.C.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [29] FRACTIONAL VISCOELASTIC EQUATION OF KIRCHHOFF TYPE WITH LOGARITHMIC NONLINEARITY
    Cabanillas Lapa, Eugenio
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [30] Global well-posedness of wave equation with weak and strong damping terms p-Laplacian and logarithmic nonlinearity source term
    Wu, Xiulan
    Yang, Xiaoxin
    Cheng, Libo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74