Convergence Analysis for Differentially Private Federated Averaging in Heterogeneous Settings

被引:0
|
作者
Li, Yiwei [1 ]
Wang, Shuai [2 ]
Wu, Qilong [1 ]
机构
[1] Xiamen Univ Technol, Fujian Key Lab Commun Network & Informat Proc, Xiamen 361024, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
关键词
federated learning; convergence analysis; privacy analysis; data heterogeneity; EDGE NETWORKS;
D O I
10.3390/math13030497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Federated learning (FL) has emerged as a prominent approach for distributed machine learning, enabling collaborative model training while preserving data privacy. However, the presence of non-i.i.d. data and the need for robust privacy protection introduce significant challenges in theoretically analyzing the performance of FL algorithms. In this paper, we present novel theoretical analysis on typical differentially private federated averaging (DP-FedAvg) by judiciously considering the impact of non-i.i.d. data on convergence and privacy guarantees. Our contributions are threefold: (i) We introduce a theoretical framework for analyzing the convergence of DP-FedAvg algorithm by considering different client sampling and data sampling strategies, privacy amplification and non-i.i.d. data. (ii) We explore the privacy-utility tradeoff and demonstrate how client strategies interact with differential privacy to affect learning performance. (iii) We provide extensive experimental validation using real-world datasets to verify our theoretical findings.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Differentially Private Federated Learning with Local Regularization and Sparsification
    Cheng, Anda
    Wang, Peisong
    Zhang, Xi Sheryl
    Cheng, Jian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10112 - 10121
  • [32] Differentially Private Federated Learning for Multitask Objective Recognition
    Xie, Renyou
    Li, Chaojie
    Zhou, Xiaojun
    Chen, Hongyang
    Dong, Zhaoyang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7269 - 7281
  • [33] Make Landscape Flatter in Differentially Private Federated Learning
    Shi, Yifan
    Liu, Yingqi
    Wei, Kang
    Shen, Li
    Wang, Xueqian
    Tao, Dacheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24552 - 24562
  • [34] Differentially Private Federated Learning With an Adaptive Noise Mechanism
    Xue, Rui
    Xue, Kaiping
    Zhu, Bin
    Luo, Xinyi
    Zhang, Tianwei
    Sun, Qibin
    Lu, Jun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 74 - 87
  • [35] Differentially private federated learning framework with adaptive clipping
    Wang F.
    Xie M.
    Li Q.
    Wang C.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (04): : 111 - 112
  • [36] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701
  • [37] Differentially Private Federated Learning With Importance Client Sampling
    Chen, Lin
    Ding, Xiaofeng
    Li, Mengqi
    Jin, Hai
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3635 - 3649
  • [38] Differentially Private Federated Bayesian Optimization with Distributed Exploration
    Dai, Zhongxiang
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Local differentially private federated learning with homomorphic encryption
    Zhao, Jianzhe
    Huang, Chenxi
    Wang, Wenji
    Xie, Rulin
    Dong, Rongrong
    Matwin, Stan
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (17): : 19365 - 19395
  • [40] Clustering Federated Learning with Differentially Private Optimization on Transformer
    Zhi, Yajing
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL CONFERENCE ON NETWORKS, COMMUNICATIONS AND INFORMATION TECHNOLOGY, CNCIT 2024, 2024, : 93 - 97