Convergence Analysis for Differentially Private Federated Averaging in Heterogeneous Settings

被引:0
|
作者
Li, Yiwei [1 ]
Wang, Shuai [2 ]
Wu, Qilong [1 ]
机构
[1] Xiamen Univ Technol, Fujian Key Lab Commun Network & Informat Proc, Xiamen 361024, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
关键词
federated learning; convergence analysis; privacy analysis; data heterogeneity; EDGE NETWORKS;
D O I
10.3390/math13030497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Federated learning (FL) has emerged as a prominent approach for distributed machine learning, enabling collaborative model training while preserving data privacy. However, the presence of non-i.i.d. data and the need for robust privacy protection introduce significant challenges in theoretically analyzing the performance of FL algorithms. In this paper, we present novel theoretical analysis on typical differentially private federated averaging (DP-FedAvg) by judiciously considering the impact of non-i.i.d. data on convergence and privacy guarantees. Our contributions are threefold: (i) We introduce a theoretical framework for analyzing the convergence of DP-FedAvg algorithm by considering different client sampling and data sampling strategies, privacy amplification and non-i.i.d. data. (ii) We explore the privacy-utility tradeoff and demonstrate how client strategies interact with differential privacy to affect learning performance. (iii) We provide extensive experimental validation using real-world datasets to verify our theoretical findings.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Differentially Private Federated Knowledge Graphs Embedding
    Peng, Hao
    Li, Haoran
    Song, Yangqiu
    Zheng, Vincent
    Li, Jianxin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1416 - 1425
  • [22] Differentially private knowledge transfer for federated learning
    Tao Qi
    Fangzhao Wu
    Chuhan Wu
    Liang He
    Yongfeng Huang
    Xing Xie
    Nature Communications, 14
  • [23] Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
    Rahimian, Shadi
    Kerkouche, Raouf
    Kurth, Ina
    Fritz, Mario
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, VOL 174, 2022, 174 : 411 - 425
  • [24] Differentially Private Federated Learning With Stragglers’ Delays in Cross-Silo Settings: An Online Mirror Descent Approach
    Odeyomi, Olusola
    Tankard, Earl
    Rawat, Danda
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (01) : 308 - 321
  • [25] DPAUC: Differentially Private AUC Computation in Federated Learning
    Sun, Jiankai
    Yang, Xin
    Yao, Yuanshun
    Xie, Junyuan
    Wu, Di
    Wang, Chong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15170 - 15178
  • [26] FLDS: differentially private federated learning with double shufflers
    Qi, Qingqiang
    Yang, Xingye
    Hu, Chengyu
    Tang, Peng
    Su, Zhiyuan
    Guo, Shanqing
    COMPUTER JOURNAL, 2024,
  • [27] Local differentially private federated learning with homomorphic encryption
    Jianzhe Zhao
    Chenxi Huang
    Wenji Wang
    Rulin Xie
    Rongrong Dong
    Stan Matwin
    The Journal of Supercomputing, 2023, 79 : 19365 - 19395
  • [28] FLAME: Differentially Private Federated Learning in the Shuffle Model
    Liu, Ruixuan
    Cao, Yang
    Chen, Hong
    Guo, Ruoyang
    Yoshikawa, Masatoshi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8688 - 8696
  • [29] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [30] Evaluating the Impact of Mobility on Differentially Private Federated Learning
    Kim, Eun-ji
    Lee, Eun-Kyu
    APPLIED SCIENCES-BASEL, 2024, 14 (12):