Convergence Analysis for Differentially Private Federated Averaging in Heterogeneous Settings

被引:0
|
作者
Li, Yiwei [1 ]
Wang, Shuai [2 ]
Wu, Qilong [1 ]
机构
[1] Xiamen Univ Technol, Fujian Key Lab Commun Network & Informat Proc, Xiamen 361024, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
关键词
federated learning; convergence analysis; privacy analysis; data heterogeneity; EDGE NETWORKS;
D O I
10.3390/math13030497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Federated learning (FL) has emerged as a prominent approach for distributed machine learning, enabling collaborative model training while preserving data privacy. However, the presence of non-i.i.d. data and the need for robust privacy protection introduce significant challenges in theoretically analyzing the performance of FL algorithms. In this paper, we present novel theoretical analysis on typical differentially private federated averaging (DP-FedAvg) by judiciously considering the impact of non-i.i.d. data on convergence and privacy guarantees. Our contributions are threefold: (i) We introduce a theoretical framework for analyzing the convergence of DP-FedAvg algorithm by considering different client sampling and data sampling strategies, privacy amplification and non-i.i.d. data. (ii) We explore the privacy-utility tradeoff and demonstrate how client strategies interact with differential privacy to affect learning performance. (iii) We provide extensive experimental validation using real-world datasets to verify our theoretical findings.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Differentially Private Federated Learning on Heterogeneous Data
    Noble, Maxence
    Bellet, Aurelien
    Dieuleveut, Aymeric
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [2] An accurate, scalable and verifiable protocol for federated differentially private averaging
    César Sabater
    Aurélien Bellet
    Jan Ramon
    Machine Learning, 2022, 111 : 4249 - 4293
  • [3] An accurate, scalable and verifiable protocol for federated differentially private averaging
    Sabater, Cesar
    Bellet, Aurelien
    Ramon, Jan
    MACHINE LEARNING, 2022, 111 (11) : 4249 - 4293
  • [4] Differentially Private Federated Learning with Heterogeneous Group Privacy
    Jiang, Mingna
    Wei, Linna
    Cai, Guoyue
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 143 - 150
  • [5] Empirical Convergence Analysis of Federated Averaging for Failure Prognosis
    Dhada, Maharshi
    Jain, Amit Kumar
    Parlikad, Ajith Kumar
    IFAC PAPERSONLINE, 2020, 53 (03): : 360 - 365
  • [6] Differentially Private Federated Learning on Non-iid Data: Convergence Analysis and Adaptive Optimization
    Chen, Lin
    Ding, Xiaofeng
    Bao, Zhifeng
    Zhou, Pan
    Jin, Hai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4567 - 4581
  • [7] Concentrated Differentially Private Federated Learning With Performance Analysis
    Hu, Rui
    Guo, Yuanxiong
    Gong, Yanmin
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2021, 2 : 276 - 289
  • [8] Convergence Analysis of Sequential Federated Learning on Heterogeneous Data
    Li, Yipeng
    Lyu, Xinchen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Differentially Private Vertical Federated Clustering
    Li, Zitao
    Wang, Tianhao
    Li, Ninghui
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (06): : 1277 - 1290
  • [10] On the Convergence of Federated Averaging with Cyclic Client Participation
    Cho, Yae Jee
    Sharma, Pranay
    Joshi, Gauri
    Xu, Zheng
    Kale, Satyen
    Zhang, Tong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202