Phosphoric Acid Anodizing Effect on Morphology and Corrosion Resistance of Nanostructured Anodic Oxide Layers on 6061 Aluminum Alloy

被引:0
|
作者
Lee, Sulki [1 ]
Cho, Yi Je [2 ]
机构
[1] Samsung Electromech Co Ltd, Suwon 16674, South Korea
[2] Sunchon Natl Univ, Dept Mat Sci & Met Engn, Sunchon 57922, South Korea
关键词
Anodizing; Phosphoric acid; Anodic oxide layer; Morphology; Corrosion behavior; POROUS ALUMINA; BEHAVIOR; ELECTROLYTE; OXIDATION; TEMPERATURE; FABRICATION; THICKNESS; STRENGTH; CHROMATE; ADHESION;
D O I
10.1007/s12540-025-01898-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phosphoric acid anodizing (PAA) exhibits a weakness of low corrosion resistance of anodic oxide layers on aluminum, necessitating a systematic analysis to understand a relationship between the PAA process and corrosion behaviors. This study investigated PAA effects on the morphology and corrosion resistance of nanostructured anodic oxide layers by varying electrolyte temperature, compared with sulfuric (SAA) and oxalic (OAA) acid anodizing, followed by NiF2 sealing. 6061 aluminum alloy was anodized in 10 wt% phosphoric acid at 100 V for 30 min at 273, 293, and 313 K. The pore diameter, porosity, and oxide layer thickness increased with increasing the electrolyte temperature. Thin and irregular layers appeared at 313 K due to accelerated dissolution, resulting in the lowest corrosion resistance. The PAA sample at 293 K showed a current density of -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.75 V in potentiodynamic polarization, comparable to the sealed SAA and OAA samples, despite a thinner oxide layer. The barrier layer resistance of the PAA sample at 293 K was 1.60 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2, similar to SAA (1.44 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2) and OAA (1.27 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2). The barrier layer thickness was estimated at 60.4 nm for the PAA sample at 293 K, while minimal thickness was found at 273 and 313 K. A uniform AlPO4 formation in PAA provides an effective protective barrier to significantly improve corrosion resistance without a requirement of sealing. This first detailed study on PAA provides benchmark processes and data that can be utilized for the rapid production of corrosion-resistant aluminum-based engineering components.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Influence of adipic acid on anodic film formation and corrosion resistance of 2024 aluminum alloy
    Li, Ying-dong
    Zhang, You
    Li, Song-mei
    Zhao, Pi-zhi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2016, 26 (02) : 492 - 500
  • [32] Influence of Two-step Anodizing on Anodic Film Structure and Corrosion Resistance on AA6061
    Shi H.-B.
    Yu M.
    Yang M.-J.
    Liu J.-H.
    Jia Y.
    Gao X.
    Surface Technology, 2022, 51 (07): : 236 - 244
  • [33] Effect and mechanism of pyrophosphoric acid anodizing technological parameters on the superhydrophilicity coupled corrosion resistance of aluminum alloy distillation desalination tubes
    Lv, Jiang
    Chen, Zhi-Li
    Tang, Jin
    Chen, Li
    Xie, Wen-Jing
    Huang, Xiao-Jun
    Yang, Yue-Ping
    Sun, Meng-Xi
    SURFACE & COATINGS TECHNOLOGY, 2023, 465
  • [34] Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys
    Cabral-Miramontes, Jose
    Almeraya-Calderon, Facundo
    Mendez-Ramirez, Ce Tochtli
    Flore-De los Rios, Juan Pablo
    Maldonado-Bandala, Erick
    Baltazar-Zamora, Miguel Angel
    Nieves-Mendoza, Demetrio
    Lara-Banda, Maria
    Pedraza-Basulto, Gabriela
    Gaona-Tiburcio, Citlalli
    MATERIALS, 2024, 17 (17)
  • [35] Construction of anodizing/ silane / graphene oxide composite film and its corrosion resistance mechanism on aluminum alloy surface
    Li, Jiaojiao
    Cao, Yijun
    Wang, Qi
    Shang, Wei
    Peng, Ning
    Jiang, Jiqiong
    Liang, Libo
    Wen, Yuqing
    MATERIALS TODAY COMMUNICATIONS, 2021, 29
  • [36] Chemical dissolution resistance of anodic oxide layers formed on aluminum
    Bensalah, W.
    Feki, M.
    Wery, M.
    Ayedi, H. F.
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (07) : 1673 - 1679
  • [37] Effect of Graphene Oxide as an Anodizing Additive for the ZK60A Magnesium Alloy: Correlating Corrosion Resistance, Surface Chemistry and Film Morphology
    Braga, Paula Lima
    de Souza, Denise Criado Pereira
    de Oliveira, Mara Cristina Lopes
    Antunes, Renato Altobelli
    METALS, 2024, 14 (02)
  • [38] Corrosion resistance of the anodization/glycidoxypropyltrimethoxysilane composite coating on 6061 aluminum alloy
    Telmenbayar, Lkhagvaa
    Ramu, Adam Gopal
    Yang, Daejeong
    Song, Minjung
    Erdenebat, Tumur-Ochir
    Choi, Dongjin
    SURFACE & COATINGS TECHNOLOGY, 2020, 403
  • [39] Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance
    Sulki Lee
    Donghyun Kim
    Yonghwan Kim
    Uoochang Jung
    Wonsub Chung
    Metals and Materials International, 2016, 22 : 20 - 25
  • [40] Effect of Aluminum Anodizing in Phosphoric Acid Electrolyte on Adhesion Strength and Thermal Performance
    Lee, Sulki
    Kim, Donghyun
    Kim, Yonghwan
    Jung, Uoochang
    Chung, Wonsub
    METALS AND MATERIALS INTERNATIONAL, 2016, 22 (01) : 20 - 25