Phosphoric Acid Anodizing Effect on Morphology and Corrosion Resistance of Nanostructured Anodic Oxide Layers on 6061 Aluminum Alloy

被引:0
|
作者
Lee, Sulki [1 ]
Cho, Yi Je [2 ]
机构
[1] Samsung Electromech Co Ltd, Suwon 16674, South Korea
[2] Sunchon Natl Univ, Dept Mat Sci & Met Engn, Sunchon 57922, South Korea
关键词
Anodizing; Phosphoric acid; Anodic oxide layer; Morphology; Corrosion behavior; POROUS ALUMINA; BEHAVIOR; ELECTROLYTE; OXIDATION; TEMPERATURE; FABRICATION; THICKNESS; STRENGTH; CHROMATE; ADHESION;
D O I
10.1007/s12540-025-01898-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phosphoric acid anodizing (PAA) exhibits a weakness of low corrosion resistance of anodic oxide layers on aluminum, necessitating a systematic analysis to understand a relationship between the PAA process and corrosion behaviors. This study investigated PAA effects on the morphology and corrosion resistance of nanostructured anodic oxide layers by varying electrolyte temperature, compared with sulfuric (SAA) and oxalic (OAA) acid anodizing, followed by NiF2 sealing. 6061 aluminum alloy was anodized in 10 wt% phosphoric acid at 100 V for 30 min at 273, 293, and 313 K. The pore diameter, porosity, and oxide layer thickness increased with increasing the electrolyte temperature. Thin and irregular layers appeared at 313 K due to accelerated dissolution, resulting in the lowest corrosion resistance. The PAA sample at 293 K showed a current density of -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.75 V in potentiodynamic polarization, comparable to the sealed SAA and OAA samples, despite a thinner oxide layer. The barrier layer resistance of the PAA sample at 293 K was 1.60 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2, similar to SAA (1.44 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2) and OAA (1.27 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2). The barrier layer thickness was estimated at 60.4 nm for the PAA sample at 293 K, while minimal thickness was found at 273 and 313 K. A uniform AlPO4 formation in PAA provides an effective protective barrier to significantly improve corrosion resistance without a requirement of sealing. This first detailed study on PAA provides benchmark processes and data that can be utilized for the rapid production of corrosion-resistant aluminum-based engineering components.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Improving the Corrosion Behaviour of 6061 Aluminum Alloy by Controlled Anodic Formed Oxide Layer
    Dumitrascu, Valentin Marian
    Benea, Lidia
    REVISTA DE CHIMIE, 2017, 68 (01): : 77 - 80
  • [12] Nanostructured Layers of Anodic Aluminum Oxide on Insulating Substrates
    Dukhnovskii, M. P.
    Vedeneev, A. S.
    Gudkov, V. A.
    Ratnikova, A. K.
    Rylkov, V. V.
    Fedorov, Yu. Yu.
    Bugaev, A. S.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2012, 57 (01) : 91 - 94
  • [13] Nanostructured layers of anodic aluminum oxide on insulating substrates
    M. P. Dukhnovskii
    A. S. Vedeneev
    V. A. Gudkov
    A. K. Ratnikova
    V. V. Rylkov
    Yu. Yu. Fedorov
    A. S. Bugaev
    Journal of Communications Technology and Electronics, 2012, 57 : 91 - 94
  • [14] Effect of Anodizing Parameters on Film Morphology and Corrosion Resistance of AA2099 Aluminum-Lithium Alloy
    Ma, Y.
    Zhou, X.
    Liao, Y.
    Chen, X.
    Zhang, C.
    Wu, H.
    Wang, Z.
    Huang, W.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (07) : C369 - C376
  • [15] Morphology of anodic aluminum oxide anodized in a mixture of phosphoric acid and lithium phosphate monobasic
    Abd-Elnaiem, Alaa M.
    Rashad, M.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (01)
  • [16] Corrosion resistance of aluminum fluoride modified 6061 aluminum alloy
    Xiao, Wei
    Wang, Ying
    MATERIALS LETTERS, 2021, 298
  • [17] Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum
    Jeong, Chanyoung
    Lee, Junghoon
    Sheppard, Keith
    Choi, Chang-Hwan
    LANGMUIR, 2015, 31 (40) : 11040 - 11050
  • [18] The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films
    Ren, Jianjun
    Zuo, Yu
    APPLIED SURFACE SCIENCE, 2012, 261 : 193 - 200
  • [19] Anodizing technology and corrosion resistance of high silicon aluminum alloy
    Niu, Dun
    Li, Zhan-Chao
    Liu, Ying-Xin
    Yu, Fu-Xiao
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2009, 30 (SUPPL. 2): : 107 - 110
  • [20] SURFACE STUDIES OF ANODIC ALUMINUM-OXIDE LAYERS FORMED IN PHOSPHORIC-ACID SOLUTIONS
    MCDEVITT, NT
    BAUN, WL
    FUGATE, GW
    SOLOMON, JS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (03) : C99 - C99