Phosphoric Acid Anodizing Effect on Morphology and Corrosion Resistance of Nanostructured Anodic Oxide Layers on 6061 Aluminum Alloy

被引:0
|
作者
Lee, Sulki [1 ]
Cho, Yi Je [2 ]
机构
[1] Samsung Electromech Co Ltd, Suwon 16674, South Korea
[2] Sunchon Natl Univ, Dept Mat Sci & Met Engn, Sunchon 57922, South Korea
关键词
Anodizing; Phosphoric acid; Anodic oxide layer; Morphology; Corrosion behavior; POROUS ALUMINA; BEHAVIOR; ELECTROLYTE; OXIDATION; TEMPERATURE; FABRICATION; THICKNESS; STRENGTH; CHROMATE; ADHESION;
D O I
10.1007/s12540-025-01898-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phosphoric acid anodizing (PAA) exhibits a weakness of low corrosion resistance of anodic oxide layers on aluminum, necessitating a systematic analysis to understand a relationship between the PAA process and corrosion behaviors. This study investigated PAA effects on the morphology and corrosion resistance of nanostructured anodic oxide layers by varying electrolyte temperature, compared with sulfuric (SAA) and oxalic (OAA) acid anodizing, followed by NiF2 sealing. 6061 aluminum alloy was anodized in 10 wt% phosphoric acid at 100 V for 30 min at 273, 293, and 313 K. The pore diameter, porosity, and oxide layer thickness increased with increasing the electrolyte temperature. Thin and irregular layers appeared at 313 K due to accelerated dissolution, resulting in the lowest corrosion resistance. The PAA sample at 293 K showed a current density of -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.75 V in potentiodynamic polarization, comparable to the sealed SAA and OAA samples, despite a thinner oxide layer. The barrier layer resistance of the PAA sample at 293 K was 1.60 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2, similar to SAA (1.44 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2) and OAA (1.27 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} cm2). The barrier layer thickness was estimated at 60.4 nm for the PAA sample at 293 K, while minimal thickness was found at 273 and 313 K. A uniform AlPO4 formation in PAA provides an effective protective barrier to significantly improve corrosion resistance without a requirement of sealing. This first detailed study on PAA provides benchmark processes and data that can be utilized for the rapid production of corrosion-resistant aluminum-based engineering components.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effect of anodizing process on corrosion and wear resistance of 6061 alloy anodic oxide films formed in oxalic acid
    Liu, Li
    Zhang, Kun
    Xiong, Hui-Hui
    Ning, Shu-Hong
    Hu, Qi
    Dong, Li-Xin
    Chen, Hui
    Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, 2015, 36 (11): : 225 - 232
  • [2] Improving the cavitation corrosion resistance of 6061 aluminum alloy by anodizing
    Hou, Mengyang
    Pan, Chengcheng
    Wang, Mingyang
    Xia, Da-Hai
    Qin, Zhenbo
    Hu, Wenbin
    ELECTROCHIMICA ACTA, 2024, 503
  • [3] Effect of the Anodizing Temperature on Microstructure and Tribological Properties of 6061 Aluminum Alloy Anodic Oxide Films
    Guo, Feng
    Cao, Yongzhi
    Wang, Kaijie
    Zhang, Peng
    Cui, Yaowen
    Hu, Zhenjiang
    Xie, Zhiwen
    COATINGS, 2022, 12 (03)
  • [4] Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films
    Li, Jingui
    Wei, Hongyang
    Zhao, Kai
    Wang, Meifeng
    Chen, Dongchu
    Chen, Min
    THIN SOLID FILMS, 2020, 713
  • [5] Corrosion resistance improvement of 6061 aluminum alloy using anodizing process
    Daud, Zuraidawani Che
    Shukri, Muhammad Faidzi
    Derman, Mohd Nazree
    ADVANCES IN MATERIALS RESEARCH-AN INTERNATIONAL JOURNAL, 2024, 13 (03): : 195 - 202
  • [6] Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy
    Dong, Lei
    Li, Yibo
    Huang, Minghui
    Hu, Xiang
    Qu, Zijing
    Lu, Yan
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2022, 113
  • [7] STUDY ON PULSE ANODIZING OF 6061 ALUMINUM ALLOY AND ITS CORROSION RESISTANCE AND MECHANICAL PROPERTY
    Lidong, Zhu
    Haiji, Chen
    SURFACE REVIEW AND LETTERS, 2025,
  • [8] Corrosion resistance of 5005 aluminum alloy by anodizing treatment in a mixture of phosphoric and boric acids
    Quebbou, Zineb
    Chafi, Mohammed
    Omari, Lhaj El Hachemi
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 3854 - 3859
  • [9] The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath
    Zhang, Jin-sheng
    Zhao, Xu-hui
    Zuo, Yu
    Xiong, Jin-ping
    SURFACE & COATINGS TECHNOLOGY, 2008, 202 (14): : 3149 - 3156
  • [10] The Effect of Heat Treatment on Corrosion Resistance of 6061 Aluminum Alloy
    Zheng, Chuan-bo
    Chen, Xi
    Li, Chun-ling
    Shen, Xiao-lan
    Cheng, Ke
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (08): : 7254 - 7261