Lie Symmetries and Solutions for a Reaction-Diffusion-Advection SIS Model with Demographic Effects

被引:0
|
作者
Naz, Rehana [1 ]
Torrisi, Mariano [2 ]
Imran, Ayesha [3 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[3] Lahore Grammar Sch, Def, 483-4 G Block,Phase 5, Lahore 54810, Pakistan
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
关键词
susceptible-infectious-susceptible epidemic; Lie symmetry methods; advection rate; sensitivity analysis; diffusion coefficient; EPIDEMIC MODEL; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; PACKAGE;
D O I
10.3390/sym17010003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A reaction-diffusion susceptible-infectious-susceptible disease model with advection, vital dynamics (birth-death effects), and a standard incidence infection mechanism is carefully analyzed. Two distinct diffusion coefficients for the susceptible and infected populations are considered. The Lie symmetries and closed-form solutions for the RDA-SIS disease model are established. The derived solution allows to study dynamics of disease transmission. Our simulation clearly illustrates the evolution dynamics of the model by using the values of parameters from academic sources. A sensitivity analysis is performed, offering valuable perspectives that could inform future disease management policies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model
    Kuto, Kousuke
    Matsuzawa, Hiroshi
    Peng, Rui
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [2] Asymptotic behavior of an SIS reaction-diffusion-advection model with saturation and spontaneous infection mechanism
    Zhang, Jialiang
    Cui, Renhao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [3] A REACTION-DIFFUSION-ADVECTION SIS EPIDEMIC MODEL IN A SPATIALLY-TEMPORALLY HETEROGENEOUS ENVIRONMENT
    Jiang, Danhua
    Wang, Zhi-Cheng
    Zhang, Liang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4557 - 4578
  • [4] Dynamical behavior of solutions of a reaction-diffusion-advection model with a free boundary
    Sun, Ningkui
    Zhang, Di
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [5] Analysis of a Reaction-Diffusion-Advection Model with Various Allee Effects
    Alzaleq, Lewa'
    Manoranjan, Valipuram
    MATHEMATICS, 2023, 11 (10)
  • [6] A SIS reaction-diffusion-advection model in a low-risk and high-risk domain
    Ge, Jing
    Kim, Kwang Ik
    Lin, Zhigui
    Zhu, Huaiping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5486 - 5509
  • [7] A REACTION-DIFFUSION-ADVECTION SIS EPIDEMIC MODEL WITH LINEAR EXTERNAL SOURCE AND OPEN ADVECTIVE ENVIRONMENTS
    Rao, Xu
    Zhang, Guohong
    Wang, Xiaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6655 - 6677
  • [8] Wavetrain Solutions of a Reaction-Diffusion-Advection Model of Mussel-Algae Interaction
    Holzer, Matt
    Popovic, Nikola
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 431 - 478
  • [9] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [10] ASYMPTOTIC PROFILES OF THE ENDEMIC EQUILIBRIUM OF A REACTION-DIFFUSION-ADVECTION SIS EPIDEMIC MODEL WITH SATURATED INCIDENCE RATE
    Cui, Renhao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 2997 - 3022