Integrating Spatially-Resolved Transcriptomics Data Across Tissues and Individuals: Challenges and Opportunities

被引:0
|
作者
Guo, Boyi [1 ]
Ling, Wodan [2 ]
Kwon, Sang Ho [3 ,4 ,5 ]
Panwar, Pratibha [6 ,7 ,8 ]
Ghazanfar, Shila [6 ,7 ,8 ]
Martinowich, Keri [3 ,4 ,9 ,10 ,11 ]
Hicks, Stephanie C. [1 ,12 ,13 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[2] Weill Cornell Med, Dept Populat Hlth Sci, Div Biostat, New York, NY 10065 USA
[3] Lieber Inst Brain Dev, Johns Hopkins Med Campus, Baltimore, MD 21205 USA
[4] Johns Hopkins Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Baltimore, MD 21205 USA
[6] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
[7] Univ Sydney, Sydney Precis Data Sci Ctr, Camperdown, NSW 2006, Australia
[8] Univ Sydney, Charles Perkins Ctr, Camperdown, NSW 2006, Australia
[9] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD 21205 USA
[10] Johns Hopkins Univ, Johns Hopkins Kavli Neurosci Discovery Inst, Baltimore, MD 21218 USA
[11] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Ctr Computat Biol, Baltimore, MD 21218 USA
[13] Johns Hopkins Univ, Malone Ctr Engn Healthcare, Baltimore, MD 21218 USA
来源
SMALL METHODS | 2025年
基金
澳大利亚研究理事会;
关键词
integrative analysis; multi-sample; population-level; spatial alignment; spatial registration; spatially-resolved transcriptomics; RNA-SEQ DATA; HUMAN CELL ATLAS; SINGLE-CELL; GENE-EXPRESSION; NORMALIZATION; VISUALIZATION; BIOLOGY; IMPACT;
D O I
10.1002/smtd.202401194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. The lowering cost of SRT data generation presents an unprecedented opportunity to create large-scale spatial atlases and enable population-level investigation, integrating SRT data across multiple tissues, individuals, species, or phenotypes. Here, unique challenges are described in the SRT data integration, where the analytic impact of varying spatial and biological resolutions is characterized and explored. A succinct review of spatially-aware integration methods and computational strategies is provided. Exciting opportunities to advance computational algorithms amenable to atlas-scale datasets along with standardized preprocessing methods, leading to improved sensitivity and reproducibility in the future are further highlighted.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Recent advances in spatially resolved transcriptomics: challenges and opportunities
    Lee, Jongwon
    Yoo, Minsu
    Choi, Jungmin
    BMB REPORTS, 2022, 55 (03) : 113 - 124
  • [3] SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using Bioconductor
    Righelli, Dario
    Weber, Lukas M.
    Crowell, Helena L.
    Pardo, Brenda
    Collado-Torres, Leonardo
    Ghazanfar, Shila
    Lun, Aaron T. L.
    Hicks, Stephanie C.
    Risso, Davide
    BIOINFORMATICS, 2022, 38 (11) : 3128 - 3131
  • [4] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Brenda Pardo
    Abby Spangler
    Lukas M. Weber
    Stephanie C. Page
    Stephanie C. Hicks
    Andrew E. Jaffe
    Keri Martinowich
    Kristen R. Maynard
    Leonardo Collado-Torres
    BMC Genomics, 23
  • [5] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Pardo, Brenda
    Spangler, Abby
    Weber, Lukas M.
    Page, Stephanie C.
    Hicks, Stephanie C.
    Jaffe, Andrew E.
    Martinowich, Keri
    Maynard, Kristen R.
    Collado-Torres, Leonardo
    BMC GENOMICS, 2022, 23 (01)
  • [6] Spatially-resolved diagnosis of power cables in field environment: challenges and opportunities
    Fischer, E.
    Weindl, Ch.
    2018 INTERNATIONAL CONFERENCE ON DIAGNOSTICS IN ELECTRICAL ENGINEERING (DIAGNOSTIKA), 2018,
  • [7] SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies
    Tiantian Guo
    Zhiyuan Yuan
    Yan Pan
    Jiakang Wang
    Fengling Chen
    Michael Q. Zhang
    Xiangyu Li
    Genome Biology, 24
  • [8] SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies
    Guo, Tiantian
    Yuan, Zhiyuan
    Pan, Yan
    Wang, Jiakang
    Chen, Fengling
    Zhang, Michael Q.
    Li, Xiangyu
    GENOME BIOLOGY, 2023, 24 (01)
  • [9] Profiling the Human Anterior Hippocampus With Spatially-Resolved Transcriptomics
    Page, Stephanie
    Ramnauth, Anthony
    Tippani, Madhavi
    Nelson, Erik
    Divecha, Heena
    Pattie, Elizabeth
    Hyde, Thomas
    Torres, Leonardo Collado
    Maynard, Kristen
    Hicks, Stephanie
    Martinowich, Keri
    NEUROPSYCHOPHARMACOLOGY, 2022, 47 : 63 - 64
  • [10] Profiling the Human Anterior Hippocampus With Spatially-Resolved Transcriptomics
    Page, Stephanie
    Ramnauth, Anthony
    Tippani, Madhavi
    Nelson, Erik
    Divecha, Heena
    Pattie, Elizabeth
    Hyde, Thomas
    Torres, Leonardo Collado
    Maynard, Kristen
    Hicks, Stephanie
    Martinowich, Keri
    NEUROPSYCHOPHARMACOLOGY, 2022, 47 (SUPPL 1) : 63 - 64