Smooth Hazards With Multiple Time Scales

被引:0
|
作者
Carollo, Angela [1 ,2 ]
Eilers, Paul [3 ]
Putter, Hein [2 ]
Gampe, Jutta [1 ]
机构
[1] Max Planck Inst Demog Res, Rostock, Germany
[2] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
[3] Erasmus MC, Rotterdam, Netherlands
关键词
GLAM algorithms; multidimensional hazard; P-splines; sparse mixed model; time scales; ADJUVANT THERAPY; SURVIVAL; SPLINES; MODELS; LEVAMISOLE; CARCINOMA; INFERENCE;
D O I
10.1002/sim.10297
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hazard models are the most commonly used tool to analyze time-to-event data. If more than one time scale is relevant for the event under study, models are required that can incorporate the dependence of a hazard along two (or more) time scales. Such models should be flexible to capture the joint influence of several time scales, and nonparametric smoothing techniques are obvious candidates. P-splines offer a flexible way to specify such hazard surfaces, and estimation is achieved by maximizing a penalized Poisson likelihood. Standard observation schemes, such as right-censoring and left-truncation, can be accommodated in a straightforward manner. Proportional hazards regression with a baseline hazard varying over two time scales is presented. Efficient computation is possible by generalized linear array model (GLAM) algorithms or by exploiting a sparse mixed model formulation. A companion R-package is provided.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Multiple time scales and subsystem embedding in the learning of juggling
    Huys, R
    Daffertshofer, A
    Beek, PJ
    HUMAN MOVEMENT SCIENCE, 2004, 23 (3-4) : 315 - 336
  • [42] Multiple time scales in multi-state models
    Iacobelli, Simona
    Carstensen, Bendix
    STATISTICS IN MEDICINE, 2013, 32 (30) : 5315 - 5327
  • [43] Breaking bubbles across multiple time scales in turbulence
    Qi, Yinghe
    Xu, Xu
    Tan, Shiyong
    Zhong, Shijie
    Wu, Qianwen
    Ni, Rui
    JOURNAL OF FLUID MECHANICS, 2024, 983
  • [44] FEEDBACK-SYSTEMS AND MULTIPLE TIME-SCALES
    SILVAMADRIZ, R
    INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (02) : 587 - 600
  • [45] Multiple time scales in the cataclysmic variable MV Lyr
    Andronov, IL
    Antoniuk, KA
    Astrophysics of Cataclysmic Variables and Related Objects, 2005, 330 : 505 - 506
  • [46] Multiple time scales of fluvial processes - theory and applications
    Cao, Zhixian
    Pender, G.
    Hu, Peng
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2011, 1 (05)
  • [47] USE OF MULTIPLE TIME SCALES IN TURBULENT TRANSPORT MODELING
    LAUNDER, BE
    SCHIESTEL, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (16): : A709 - A712
  • [48] A model for AGN variability on multiple time-scales
    Sartori, Lia F.
    Schawinski, Kevin
    Trakhtenbrot, Benny
    Caplar, Neven
    Treister, Ezequiel
    Koss, Michael J.
    Urry, C. Megan
    Zhang, Ce
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (01) : L34 - L38
  • [49] EFFICIENT APPROXIMATION OF FLOW PROBLEMS WITH MULTIPLE SCALES IN TIME
    Frei, S.
    Richter, T.
    MULTISCALE MODELING & SIMULATION, 2020, 18 (02): : 942 - 969
  • [50] Algorithmic Reduction of Biological Networks with Multiple Time Scales
    Niclas Kruff
    Christoph Lüders
    Ovidiu Radulescu
    Thomas Sturm
    Sebastian Walcher
    Mathematics in Computer Science, 2021, 15 : 499 - 534