Smooth Hazards With Multiple Time Scales

被引:0
|
作者
Carollo, Angela [1 ,2 ]
Eilers, Paul [3 ]
Putter, Hein [2 ]
Gampe, Jutta [1 ]
机构
[1] Max Planck Inst Demog Res, Rostock, Germany
[2] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
[3] Erasmus MC, Rotterdam, Netherlands
关键词
GLAM algorithms; multidimensional hazard; P-splines; sparse mixed model; time scales; ADJUVANT THERAPY; SURVIVAL; SPLINES; MODELS; LEVAMISOLE; CARCINOMA; INFERENCE;
D O I
10.1002/sim.10297
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hazard models are the most commonly used tool to analyze time-to-event data. If more than one time scale is relevant for the event under study, models are required that can incorporate the dependence of a hazard along two (or more) time scales. Such models should be flexible to capture the joint influence of several time scales, and nonparametric smoothing techniques are obvious candidates. P-splines offer a flexible way to specify such hazard surfaces, and estimation is achieved by maximizing a penalized Poisson likelihood. Standard observation schemes, such as right-censoring and left-truncation, can be accommodated in a straightforward manner. Proportional hazards regression with a baseline hazard varying over two time scales is presented. Efficient computation is possible by generalized linear array model (GLAM) algorithms or by exploiting a sparse mixed model formulation. A companion R-package is provided.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Modeling heterogeneous sources on multiple time scales
    Saulnier, ET
    Vastola, KS
    IEEE INFOCOM '96 - FIFTEENTH ANNUAL JOINT CONFERENCE OF THE IEEE COMPUTER AND COMMUNICATIONS SOCIETIES: NETWORKING THE NEXT GENERATION, PROCEEDINGS VOLS 1-3, 1996, : 505 - 512
  • [32] MULTIPLE TIME SCALES FOR RECURRENCES OF RYDBERG STATES
    PERES, A
    PHYSICAL REVIEW A, 1993, 47 (06): : 5196 - 5197
  • [33] Multiple time scales analysis of hydrological time series with wavelet transform
    Wang, Wen-Sheng
    Ding, Jing
    Xiang, Hong-Lian
    Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition), 2002, 34 (06):
  • [34] Multiple time scales in consumer-resource interactions
    Getz, WM
    Schreiber, SJ
    ANNALES ZOOLOGICI FENNICI, 1999, 36 (01) : 11 - 20
  • [35] Multiple time scales and the empirical models for stochastic volatility
    Buchbinder, G. L.
    Chistilin, K. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) : 168 - 178
  • [36] Multiple and variant time scales in dynamic information processing
    Dinse, HR
    BEHAVIORAL AND BRAIN SCIENCES, 2001, 24 (05) : 814 - +
  • [37] MULTIPLE TIME SCALES IN THE MICROWAVE IONIZATION OF RYDBERG ATOMS
    BUCHLEITNER, A
    DELANDE, D
    ZAKRZEWSKI, J
    MANTEGNA, RN
    ARNDT, M
    WALTHER, H
    PHYSICAL REVIEW LETTERS, 1995, 75 (21) : 3818 - 3821
  • [38] WZ Cas - variability on multiple time-scales
    Lebzelter, T
    Griffin, RF
    Hinkle, KH
    ASTRONOMY & ASTROPHYSICS, 2005, 440 (01) : 295 - 303
  • [39] Multiple Time-Scales in Network-of-Networks
    Chapman, Airlie
    Mesbahi, Mehran
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5563 - 5568
  • [40] Multiple time scales and multiform dynamics in learning to juggle
    Huys, R
    Daffertshofer, A
    Beek, PJ
    MOTOR CONTROL, 2004, 8 (02) : 188 - 212