Effects of Alternate Wetting and Drying Irrigation on Methane and Nitrous Oxide Emissions From Rice Fields: A Meta-Analysis

被引:1
|
作者
Zhao, Chenxi [1 ]
Qiu, Rangjian [1 ]
Zhang, Tao [1 ]
Luo, Yufeng [1 ]
Agathokleous, Evgenios [2 ]
机构
[1] Wuhan Univ, Sch Water Resources & Hydropower Engn, State Key Lab Water Resources Engn & Management, Wuhan, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Ecol & Appl Meteorol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
biochar application; global warming potential (GWP(CH4+N2O)); methane emissions (CH4); N application; nitrous oxide emissions (N2O); safe" AWD; SOC; soil pH; GREENHOUSE-GAS EMISSIONS; WATER MANAGEMENT IMPACTS; GRAIN-YIELD; PADDY FIELD; N2O EMISSIONS; SYSTEMS; PRODUCTIVITY; GROWTH; FERTILIZATION; METHYLMERCURY;
D O I
10.1111/gcb.17581
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Reducing water input and promoting water productivity in rice field under alternate wetting and drying irrigation (AWD), instead of continuous flooding (CF), are vital due to increasing irrigation water scarcity. However, it is also important to understand how methane (CH4) and nitrous oxide (N2O) emissions and global warming potential (GWP(CH4+N2O) of CH4 and N2O) respond to AWD under the influence of various factors. Here, we conducted a meta-analysis to investigate the impact of AWD on CH4 and N2O emissions and GWP(CH4+N2O), and its modification by climate conditions, soil properties, and management practices. Overall, compared to CF, AWD significantly reduced CH4 emissions by 51.6% and GWP(CH4+N2O) by 46.9%, while increased N2O emissions by 44.0%. The effect of AWD on CH4 emissions was significantly modified by soil drying level, the number of drying events, mean annual precipitation (MAP), soil organic carbon content (SOC), growth cycle, and nitrogen fertilizer (N) application. Regarding N2O emissions, mean annual temperature (MAT), elevation, soil texture, and soil pH had significant impacts on the AWD effect. Consequently, the GWP(CH4+N2O) under AWD was altered by soil drying level, soil pH, and growth cycle. Additionally, we found that MAP or MAT can be used to accurately assess the changes of global or national CH4 and N2O emissions under mild AWD. Moreover, increasing SOC, but not N application, is a potential strategy to further reduce CH4 emissions under (mild) AWD, since no difference was found between application of 60-120 and > 120 kg N ha(-1). Furthermore, the soil pH can serve as an indicator to assess the reduction of GWP(CH4+N2O) under (mild) AWD as indicated by a significant linear correlation between them. These findings can provide valuable data support for accurate evaluation of non-CO2 greenhouse gas emissions reduction in rice fields under large-scale promotion of AWD in the future.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Methane and nitrous oxide emissions and their GWPs: Research on different irrigation modes in a rice paddy field
    Zhang, Zhongxue (zhangzhongxue@163.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (08):
  • [42] Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields
    Pereira, Jose
    Figueiredo, Nuno
    Goufo, Piebiep
    Carneiro, Joao
    Morais, Raul
    Carranca, Corina
    Coutinho, Joao
    Trindade, Henrique
    ATMOSPHERIC ENVIRONMENT, 2013, 80 : 464 - 471
  • [43] Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment
    Hou, Yong
    Velthof, Gerard L.
    Oenema, Oene
    GLOBAL CHANGE BIOLOGY, 2015, 21 (03) : 1293 - 1312
  • [44] Institutional analysis for scaling alternate wetting and drying for low-emissions rice production: evidence from Bangladesh
    Vu Hong Trang
    Nelson, Katherine M.
    Samsuzzaman, Syed
    Rahman, Saidur M.
    Rashid, Mamunur
    Salahuddin, Ahmad
    Sander, Bjoern Ole
    CLIMATE AND DEVELOPMENT, 2023, 15 (01) : 10 - 19
  • [45] Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice
    Shaukat, Muhammad
    Samoy-Pascual, Kristine
    Maas, Ellen D. V. L.
    Ahmad, Ashfaq
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 248
  • [46] Asymmetric responses of functional microbes in methane and nitrous oxide emissions to plant invasion: A meta-analysis
    Yao, Yanzhong
    Song, Youtao
    Su, Pinjie
    Wang, Jing
    Miao, Congke
    Luo, Yifu
    Sun, Qiqi
    Wang, Jiale
    Zhang, Guohui
    Bu, Naishun
    Li, Zhaolei
    SOIL BIOLOGY & BIOCHEMISTRY, 2023, 178
  • [47] Nitrous Oxide Emissions from Fields with Different Wheat and Rice Varieties
    B.GOGOI
    K.K.BARUAH
    Pedosphere, 2012, (01) : 112 - 121
  • [48] Effects of wheat straw application on methane and nitrous oxide emissions from purplish paddy fields
    Wang, Y.
    Hu, C.
    Zhu, B.
    Xiang, H.
    He, X.
    PLANT SOIL AND ENVIRONMENT, 2010, 56 (01) : 16 - 22
  • [49] Nitrous oxide emissions from three rice paddy fields in China
    Xu Hua
    Xing Guangxi
    Zu-Cong Cai
    Haruo Tsuruta
    Nutrient Cycling in Agroecosystems, 1997, 49 : 23 - 28
  • [50] Nitrous Oxide Emissions from Fields with Different Wheat and Rice Varieties
    B.GOGOI
    K.K.BARUAH
    Pedosphere, 2012, 22 (01) : 112 - 121