Interpretable Remaining Useful Life Prediction Based on Causal Feature Selection and Deep Learning

被引:0
|
作者
Li, Min [1 ]
Luo, Meiling [1 ]
Ke, Ting [1 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Artificial Intelligence, Tianjin 300457, Peoples R China
关键词
Remaining Useful Life Prediction; Causal discovery; Feature election; Attention Mechanism;
D O I
10.1007/978-981-97-5672-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust feature selection is crucial for enhancing the credibility and interpretability of machine learning models. Traditionally, deep learning networks directly learn features from raw data. However, the multidimensional data collected by sensors in dynamic systems may contain redundancy, noise, and high dimensionality, making it challenging to select the optimal feature set. To tackle this concern, we introduce a feature selection prediction framework based on causal discovery algorithms. It first identifies key features and learns their causal relationships, providing more interpretable and effective features. Subsequently, deep learning models are employed for prediction. This paper introduces a long short-term memory model that incorporates causal discovery and attention mechanisms. Our framework is applied to predict the remaining useful life (RUL) on the C-MAPSS dataset, demonstrating that causal feature selection contributes to the enhanced reliability, interpretability, and generalization of the RUL prediction model. Our approach outperforms traditional feature-unselected algorithms in terms of both generalization performance and interpretability.
引用
收藏
页码:148 / 160
页数:13
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction Based on Deep Learning: A Survey
    Wu, Fuhui
    Wu, Qingbo
    Tan, Yusong
    Xu, Xinghua
    SENSORS, 2024, 24 (11)
  • [2] A deep feature learning method for remaining useful life prediction of drilling pumps
    Guo, Junyu
    Wan, Jia-Lun
    Yang, Yan
    Dai, Le
    Tang, Aimin
    Huang, Bangkui
    Zhang, Fangfang
    Li, He
    ENERGY, 2023, 282
  • [3] Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization
    Zhao, Bo
    Zhang, Weige
    Zhang, Yanru
    Zhang, Caiping
    Zhang, Chi
    Zhang, Junwei
    APPLIED ENERGY, 2025, 379
  • [4] Similarity-based deep learning approach for remaining useful life prediction
    Hou, Mengru
    Pi, Dechang
    Li, Bingrong
    MEASUREMENT, 2020, 159
  • [5] A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
    Cheng, Cheng
    Ma, Guijun
    Zhang, Yong
    Sun, Mingyang
    Teng, Fei
    Ding, Han
    Yuan, Ye
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (03) : 1243 - 1254
  • [6] An Interpretable Deep Transfer Learning-Based Remaining Useful Life Prediction Approach for Bearings With Selective Degradation Knowledge Fusion
    Mao, Wentao
    Liu, Jing
    Chen, Jiaxian
    Liang, Xihui
    IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [7] An Interpretable Deep Transfer Learning-Based Remaining Useful Life Prediction Approach for Bearings With Selective Degradation Knowledge Fusion
    Mao, Wentao
    Liu, Jing
    Chen, Jiaxian
    Liang, Xihui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] Deep Learning Approaches to Remaining Useful Life Prediction: A Survey
    Cummins, Logan
    Killen, Brad
    Thomas, Kirby
    Barrett, Paul
    Rahimi, Shahram
    Seale, Maria
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [9] Feature Extraction Based on Self-Supervised Learning for Remaining Useful Life Prediction
    Yu, Zhenjun
    Lei, Ningbo
    Mo, Yu
    Xu, Xin
    Li, Xiu
    Huang, Biqing
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (02)
  • [10] Ensemble learning prediction model for lithium-ion battery remaining useful life based on embedded feature selection
    Wang, Xiao-Tian
    Zhang, Song-Bo
    Wang, Jie-Sheng
    Liu, Xun
    Sun, Yun-Cheng
    Shang-Guan, Yi-Peng
    Zhang, Ze-Zheng
    APPLIED SOFT COMPUTING, 2025, 169