Interpretable Remaining Useful Life Prediction Based on Causal Feature Selection and Deep Learning

被引:0
|
作者
Li, Min [1 ]
Luo, Meiling [1 ]
Ke, Ting [1 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Artificial Intelligence, Tianjin 300457, Peoples R China
关键词
Remaining Useful Life Prediction; Causal discovery; Feature election; Attention Mechanism;
D O I
10.1007/978-981-97-5672-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust feature selection is crucial for enhancing the credibility and interpretability of machine learning models. Traditionally, deep learning networks directly learn features from raw data. However, the multidimensional data collected by sensors in dynamic systems may contain redundancy, noise, and high dimensionality, making it challenging to select the optimal feature set. To tackle this concern, we introduce a feature selection prediction framework based on causal discovery algorithms. It first identifies key features and learns their causal relationships, providing more interpretable and effective features. Subsequently, deep learning models are employed for prediction. This paper introduces a long short-term memory model that incorporates causal discovery and attention mechanisms. Our framework is applied to predict the remaining useful life (RUL) on the C-MAPSS dataset, demonstrating that causal feature selection contributes to the enhanced reliability, interpretability, and generalization of the RUL prediction model. Our approach outperforms traditional feature-unselected algorithms in terms of both generalization performance and interpretability.
引用
收藏
页码:148 / 160
页数:13
相关论文
共 50 条
  • [31] Interpretable instance disease prediction based on causal feature selection and effect analysis
    YuWen Chen
    Ju Zhang
    XiaoLin Qin
    BMC Medical Informatics and Decision Making, 22
  • [32] Remaining useful life prediction based on stacking ensemble learning
    Han, Tengfei
    Li, Yaping
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (07): : 2464 - 2473
  • [33] Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences
    Kraus, Mathias
    Feuerriegel, Stefan
    DECISION SUPPORT SYSTEMS, 2019, 125
  • [34] A novel method of health indicator construction and remaining useful life prediction based on deep learning
    Zhan, Xianbiao
    Liu, Zixuan
    Yan, Hao
    Wu, Zhenghao
    Guo, Chiming
    Jia, Xisheng
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2023, 25 (04):
  • [35] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    APPLIED SOFT COMPUTING, 2020, 86
  • [36] Remaining useful life prediction based on state assessment using edge computing on deep learning
    Hsu, Hsin-Yao
    Srivastava, Gautam
    Wu, Hsin-Te
    Chen, Mu-Yen
    COMPUTER COMMUNICATIONS, 2020, 160 : 91 - 100
  • [37] Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine
    Muneer, Amgad
    Taib, Shakirah Mohd
    Fati, Suliman Mohamed
    Alhussian, Hitham
    SYMMETRY-BASEL, 2021, 13 (10):
  • [38] Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach
    Chen, Zhenghua
    Wu, Min
    Zhao, Rui
    Guretno, Feri
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) : 2521 - 2531
  • [39] Prediction Model of Aero-engine Remaining Useful Life Based on Deep Learning Method
    Guo X.
    Yun Y.
    Xu X.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2024, 44 (02): : 330 - 336
  • [40] Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing
    Sun, Chuang
    Ma, Meng
    Zhao, Zhibin
    Tian, Shaohua
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) : 2416 - 2425