Finite propagation speed for Leibenson's equation on Riemannian manifolds

被引:0
|
作者
Grigor'yan, Alexander [1 ]
Suerig, Philipp [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
POROUS-MEDIUM EQUATION; HEAT-EQUATION; SUPERSOLUTIONS; BEHAVIOR; SOBOLEV; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider on arbitrary Riemannian manifolds the Leibenson equation partial derivative(tu) = Delta(p)uq. This equation is also known as doubly nonlinear evolution equation. It comes from hydrodynamics where it describes filtration of a turbulent compressible liquid in porous medium. We prove that that, under optimal restrictions on p and q, weak subsolutions to this equation have finite propagation speed.
引用
收藏
页码:2467 / 2504
页数:38
相关论文
共 50 条
  • [21] On the uniqueness for the heat equation on complete Riemannian manifolds
    He, Fei
    Lee, Man-Chun
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (04) : 497 - 504
  • [22] THE LORENTZ EQUATION ON PSEUDO-RIEMANNIAN MANIFOLDS
    NEITZKE, K
    MATHEMATISCHE NACHRICHTEN, 1990, 149 : 183 - 214
  • [24] The finite speed of propagation for solutions to stochastic viscoelastic wave equation
    Liang, Fei
    Hu, Zhe
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [25] The finite speed of propagation for solutions to stochastic viscoelastic wave equation
    Fei Liang
    Zhe Hu
    Boundary Value Problems, 2019
  • [26] Finite propagation speed for solutions of the wave equation on metric graphs
    Kostrykin, Vadim
    Potthoff, Juergen
    Schrader, Robert
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (05) : 1198 - 1223
  • [27] Consensus on complete Riemannian manifolds in finite time
    Chen, Sheng
    Shi, Peng
    Zhang, Weigong
    Zhao, Lindu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 497 - 504
  • [28] A Faber–Krahn Inequality for Solutions of Schrödinger’s Equation on Riemannian Manifolds
    Emerson Abreu
    Ezequiel Barbosa
    The Journal of Geometric Analysis, 2018, 28 : 1078 - 1090
  • [29] A Faber-Krahn Inequality for Solutions of Schrodinger's Equation on Riemannian Manifolds
    Abreu, Emerson
    Barbosa, Ezequiel
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1078 - 1090
  • [30] The fractional porous medium equation on noncompact Riemannian manifolds
    Berchio, Elvise
    Bonforte, Matteo
    Grillo, Gabriele
    Muratori, Matteo
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 3603 - 3651