In this paper, a class of second order stochastic evolution equations with memory
utt(t,x)−Δu(t,x)+∫0tg(t−s)Δu(s,x)ds+f(u)=σ(u)∂W(x,t)∂t,x∈D⊂Rn,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ u_{tt}(t,x)-\Delta u(t,x)+ \int _{0}^{t} g(t-s)\Delta u(s,x)\,ds+f(u)= \sigma (u)\frac{\partial W(x,t)}{\partial t}, \quad x\in D\subset \mathbb{R}^{n}, $$\end{document} is considered, where f is a continuous function with polynomial growth of order less than or equal to n/(n−2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$n/(n-2)$\end{document} and σ is Lipschitz with σ(0)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\sigma (0)=0$\end{document}. By Tartar’s energy method, we prove that for any solution to the equation the propagate speed is finite.