On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers

被引:0
|
作者
Rihane, Salah Eddine [1 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
来源
关键词
k-Fibonacci numbers; Balancing numbers; Lucas-Balancing numbers; Linear form in logarithms; Reduction method; DIOPHANTINE EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Balancing number n and the balancer r are solution of the Diophantine equation 1 + 2 + ... +(n - 1) = (n + 1) + (n + 2) + ... + (n + r). It is well known that if n is balancing number, then 8n(2) + 1 is a perfect square and its positive square root is called a Lucas-Balancing number. Let k >= 2. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequences. For these sequence the first k terms are 0, ... , 0, 1 and each term afterwards is the sum of the preceding k terms. In this manuscript, our main objective is to find all k-Fibonacci numbers which are the product of two Balancing or Lucas-Balancing numbers.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 50 条
  • [31] Two generalizations of dual-complex Lucas-balancing numbers
    Brod, Dorota
    Szynal-Liana, Anetta
    Wloch, Iwona
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2022, 14 (02) : 220 - 230
  • [32] Balancing and Lucas-balancing numbers which are concatenation of three repdigits
    Rayaguru, S. G.
    Bravo, Jhon J.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (03):
  • [33] Tridiagonal matrices related to subsequences of balancing and Lucas-balancing numbers
    Ray, Prasanta K.
    Panda, Gopal K.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (03) : 56 - 63
  • [34] Relating Balancing Polynomials to Lucas-Balancing Polynomials via Bernoulli Numbers
    Goubi, Mouloud
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (04)
  • [35] On Relationship Among a New Family of k-Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers
    Ozkan, Engin
    Altun, Ipek
    Gocer, Ali Aykut
    CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (04): : 1744 - 1750
  • [36] REPDIGITS AS PRODUCTS OF BALANCING AND LUCAS-BALANCING NUMBERS WITH INDICES IN ARITHMETIC PROGRESSIONS
    Rayaguru, Sai Gopal
    Panda, Gopal Krishna
    FIBONACCI QUARTERLY, 2019, 57 (03): : 231 - 237
  • [37] Sum formulas involving powers of balancing and Lucas-balancing numbers - II
    Rayaguru, S. G.
    Panda, G. K.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) : 102 - 110
  • [38] The Generalized k-Fibonacci and k-Lucas Numbers
    Uslu, K.
    Taskara, N.
    Kose, H.
    ARS COMBINATORIA, 2011, 99 : 25 - 32
  • [39] On Generating Matrices of the Bidimensional Balancing, Lucas-Balancing, Lucas-Cobalancing and Cobalancing Numbers
    Chimpanzo, J.
    Catarino, P.
    Otero-Espinar, M. V.
    JOURNAL OF MATHEMATICAL EXTENSION, 2024, 18 (04) : 1 - 20
  • [40] FERMAT k-FIBONACCI AND k-LUCAS NUMBERS
    Bravo, Jhon J.
    Herrera, Jose L.
    MATHEMATICA BOHEMICA, 2020, 145 (01): : 19 - 32