On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers

被引:0
|
作者
Rihane, Salah Eddine [1 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
来源
关键词
k-Fibonacci numbers; Balancing numbers; Lucas-Balancing numbers; Linear form in logarithms; Reduction method; DIOPHANTINE EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Balancing number n and the balancer r are solution of the Diophantine equation 1 + 2 + ... +(n - 1) = (n + 1) + (n + 2) + ... + (n + r). It is well known that if n is balancing number, then 8n(2) + 1 is a perfect square and its positive square root is called a Lucas-Balancing number. Let k >= 2. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequences. For these sequence the first k terms are 0, ... , 0, 1 and each term afterwards is the sum of the preceding k terms. In this manuscript, our main objective is to find all k-Fibonacci numbers which are the product of two Balancing or Lucas-Balancing numbers.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 50 条
  • [21] Factorizations of the Negatively Subscripted Balancing and Lucas-Balancing Numbers
    Ray, Prasanta Kumar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (02): : 161 - 173
  • [22] EXACT DIVISIBILITY BY POWERS OF THE BALANCING AND LUCAS-BALANCING NUMBERS
    Patra, Asim
    Panda, Gopal Krishna
    Khemaratchatakumthorn, Tammatada
    FIBONACCI QUARTERLY, 2021, 59 (01): : 57 - 64
  • [23] On the Periodicity of Lucas-Balancing Numbers and p-adic Order of Balancing Numbers
    Takao Komatsu
    Bijan Kumar Patel
    Prasanta Kumar Ray
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 557 - 562
  • [24] On the Periodicity of Lucas-Balancing Numbers and p-adic Order of Balancing Numbers
    Komatsu, Takao
    Patel, Bijan Kumar
    Ray, Prasanta Kumar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02): : 557 - 562
  • [25] Some Identities for Balancing and Lucas-Balancing Numbers in Bidimensional Version
    Chimpanzo, Jose
    Catarino, Paula
    Otero-Espinar, M. Victoria
    MATHEMATICAL METHODS FOR ENGINEERING APPLICATIONS, ICMASE 2023, 2024, 439 : 31 - 41
  • [26] RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS
    Panda, Gopal Krishna
    Komatsu, Takao
    Davala, Ravi Kumar
    MATHEMATICAL REPORTS, 2018, 20 (02): : 201 - 214
  • [27] Balancing and Lucas-balancing numbers which are concatenation of three repdigits
    S. G. Rayaguru
    Jhon J. Bravo
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [28] Application of Chybeshev Polynomials in Factorizations of Balancing and Lucas-Balancing Numbers
    Ray, Prasanta Kumar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2012, 30 (02): : 49 - 56
  • [29] Certain Diophantine equations involving balancing and Lucas-balancing numbers
    Ray, Prasanta Kumar
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (02): : 165 - 173
  • [30] On the properties of Lucas-balancing numbers by matrix method
    Ray, Prasanta K.
    SIGMAE, 2014, 3 (01): : 1 - 6