Data-Driven Design of Mechanically Hard Soft Magnetic High-Entropy Alloys

被引:0
|
作者
Dai, Mian [1 ]
Zhang, Yixuan [1 ]
Li, Xiaoqing [2 ]
Schonecker, Stephan [2 ]
Han, Liuliu [3 ]
Xie, Ruiwen [1 ]
Shen, Chen [1 ]
Zhang, Hongbin [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Alarich Weiss Str 16, Darmstadt, Germany
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Max Planck Inst Sustainable Mat, Max Planck Str 1, Dusseldorf, Germany
基金
瑞典研究理事会;
关键词
density functional theory; high-entropy alloys; high-throughput calculations; machine learning; mechanically hard soft magnets; PHASE; TEMPERATURES; EXPLORATION; CHALLENGES;
D O I
10.1002/advs.202500867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design and optimization of mechanically hard soft magnetic materials, which combine high hardness with magnetically soft properties, represent a critical frontier in materials science for advanced technological applications. To address this challenge, a data-driven framework is presented for exploring the vast compositional space of high-entropy alloys (HEAs) and identifying candidates optimized for multifunctionality. The study employs a comprehensive dataset of 1 842 628 density functional theory calculations, comprising 45 886 quaternary and 414 771 quinary equimolar HEAs derived from 42 elements. Using ensemble learning, predictive models are integrated to capture the relationships between composition, crystal structure, mechanical, and magnetic properties. This framework offers a robust pathway for accelerating the discovery of next-generation alloys with high hardness and magnetic softness, highlighting the transformative impact of data-driven strategies in material design.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-driven based phase constitution prediction in high entropy alloys
    Han, Qinan
    Lu, Zhanglun
    Zhao, Siyu
    Su, Yue
    Cui, Haitao
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 215
  • [22] Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys
    Lucas, M. S.
    Belyea, D.
    Bauer, C.
    Bryant, N.
    Michel, E.
    Turgut, Z.
    Leontsev, S. O.
    Horwath, J.
    Semiatin, S. L.
    McHenry, M. E.
    Miller, C. W.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (17)
  • [23] Oxidation Behavior of Mechanically Alloyed High-Entropy Alloys: A Review
    Dikonda, Swathi Mallika
    Anupam, Ameey
    Vaidya, Mayur
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (06)
  • [24] Editorial: Data-Driven Integrated Computational Materials Engineering for High-Entropy Materials
    Wang, William Yi
    Zhang, Yong
    Liaw, Peter K.
    FRONTIERS IN MATERIALS, 2021, 8
  • [25] An experimentally driven high-throughput approach to design refractory high-entropy alloys
    Lee C.
    Xie D.
    Kyle Derby B.
    Kevin Baldwin J.
    Tandoc C.
    Ei Atwani O.
    Hu Y.-J.
    Valdez J.A.
    Li N.
    Fensin S.J.
    Materials and Design, 2022, 223
  • [26] Data driving design of high-entropy alloys for lightweight and dynamic applications
    Cui, Kaixuan
    Qiao, Junwei
    Liaw, Peter K.
    Zhang, Yong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (02)
  • [27] Data driving design of high-entropy alloys for lightweight and dynamic applications
    Kaixuan Cui
    Junwei Qiao
    Peter K. Liaw
    Yong Zhang
    Science China Physics, Mechanics & Astronomy, 2024, 67
  • [28] Data driving design of high-entropy alloys for lightweight and dynamic applications
    Kaixuan Cui
    Junwei Qiao
    Peter K.Liaw
    Yong Zhang
    ScienceChina(Physics,Mechanics&Astronomy), 2024, (02) : 14 - 28
  • [29] Magnetic and vibrational properties of high-entropy alloys
    Lucas, M. S.
    Mauger, L.
    Munoz, J. A.
    Xiao, Yuming
    Sheets, A. O.
    Semiatin, S. L.
    Horwath, J.
    Turgut, Z.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [30] Data-driven design of soft sensors
    James T. Glazar
    Vivek B. Shenoy
    Nature Machine Intelligence, 2022, 4 : 194 - 195