Data-Driven Design of Mechanically Hard Soft Magnetic High-Entropy Alloys

被引:0
|
作者
Dai, Mian [1 ]
Zhang, Yixuan [1 ]
Li, Xiaoqing [2 ]
Schonecker, Stephan [2 ]
Han, Liuliu [3 ]
Xie, Ruiwen [1 ]
Shen, Chen [1 ]
Zhang, Hongbin [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Alarich Weiss Str 16, Darmstadt, Germany
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Max Planck Inst Sustainable Mat, Max Planck Str 1, Dusseldorf, Germany
基金
瑞典研究理事会;
关键词
density functional theory; high-entropy alloys; high-throughput calculations; machine learning; mechanically hard soft magnets; PHASE; TEMPERATURES; EXPLORATION; CHALLENGES;
D O I
10.1002/advs.202500867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design and optimization of mechanically hard soft magnetic materials, which combine high hardness with magnetically soft properties, represent a critical frontier in materials science for advanced technological applications. To address this challenge, a data-driven framework is presented for exploring the vast compositional space of high-entropy alloys (HEAs) and identifying candidates optimized for multifunctionality. The study employs a comprehensive dataset of 1 842 628 density functional theory calculations, comprising 45 886 quaternary and 414 771 quinary equimolar HEAs derived from 42 elements. Using ensemble learning, predictive models are integrated to capture the relationships between composition, crystal structure, mechanical, and magnetic properties. This framework offers a robust pathway for accelerating the discovery of next-generation alloys with high hardness and magnetic softness, highlighting the transformative impact of data-driven strategies in material design.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Accelerated design for magnetic high entropy alloys using data-driven multi-objective optimization
    Li, Xin
    Shan, Guangcun
    Zhang, Jiliang
    Shek, Chan-Hung
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (45) : 17291 - 17302
  • [12] Knowledge-enabled data-driven smart design advanced high-entropy alloys with attractive dynamic mechanical properties
    Zhang, Ruiyue
    Wang, William Yi
    Fan, Yijing
    Zhang, Ying
    Jia, Dian
    Wang, Jun
    Tang, Yu
    Li, Jinshan
    JOURNAL OF MATERIALS SCIENCE, 2025, 60 (01) : 567 - 587
  • [13] Design of (TiHfZr)(NiCoCu) High-Entropy Shape Memory Alloys: From Firstov's Experiments to Data-Driven Approach
    Peltier, L.
    Thiercelin, L.
    Meraghni, F.
    SHAPE MEMORY AND SUPERELASTICITY, 2025,
  • [14] Design of High-Entropy Alloys
    Stepanov, Nikita
    Zherebtsov, Sergey
    METALS, 2022, 12 (06)
  • [15] Data-driven design of high bulk modulus high entropy alloys using machine learning
    Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Indore
    453552, India
    不详
    16419, Korea, Republic of
    不详
    452010, India
    J. Alloy. Metall. Syst., 2024,
  • [16] Data-driven discovery of a formation prediction rule on high-entropy ceramics
    Yan, Yonggang
    Pei, Zongrui
    Gao, Michael C.
    Misture, Scott
    Wang, Kun
    ACTA MATERIALIA, 2023, 253
  • [17] Data-driven optimization of hardness and toughness of high-entropy nitride coatings
    Wu, Shaoyu
    Xu, Xiaoqian
    Yang, Shani
    Qiu, Jingwen
    Volinsky, Alex A.
    Pang, Xiaolu
    CERAMICS INTERNATIONAL, 2023, 49 (13) : 21561 - 21569
  • [18] Design of Refractory High-Entropy Alloys
    M. C. Gao
    C. S. Carney
    Ö. N. Doğan
    P. D. Jablonksi
    J. A. Hawk
    D. E. Alman
    JOM, 2015, 67 : 2653 - 2669
  • [19] Design of Refractory High-Entropy Alloys
    Gao, M. C.
    Carney, C. S.
    Dogan, A-N.
    Jablonksi, P. D.
    Hawk, J. A.
    Alman, D. E.
    JOM, 2015, 67 (11) : 2653 - 2669
  • [20] Data-driven prediction of grain boundary segregation and disordering in high-entropy alloys in a 5D space
    Hu, Chongze
    Luo, Jian
    MATERIALS HORIZONS, 2022, 9 (03) : 1023 - 1035