DACFusion: Dual Asymmetric Cross-Attention guided feature fusion for multispectral object detection

被引:0
|
作者
Qian, Jingchen [1 ]
Qiao, Baiyou [1 ,2 ]
Zhang, Yuekai [1 ]
Liu, Tongyan [1 ]
Wang, Shuo [1 ]
Wu, Gang [1 ,2 ]
Han, Donghong [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang 110819, Peoples R China
关键词
Multispectral object detection; Cross-attention; Feature fusion; SCALING-UP; NETWORK;
D O I
10.1016/j.neucom.2025.129913
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective fusion of unique features from different spectra plays a crucial role in multispectral object detection. Recent research has focused on transplanting advanced methods from other multimodal fusion fields to multispectral object detection tasks. These fusion methods focus on the fusion of features and ignore the spatial correspondence between multispectral images. This lack of correspondence in turn limits the full utilization of the complementarities between the different modalities, which affects the accuracy of object detection. To address this problem, we creatively propose a dual asymmetric cross-attention multispectral fusion (DACFusion) method, which is able to process features interactively based on the positional correspondence between two spectra, and then asymmetrically fuses the multispectral data according to the characteristics of each spectrum to take advantage of their complementary strengths. Meanwhile, we introduce a large selective kernel network to expand the receptive field for object detection, which further improves the detection accuracy. Experimental results on the VEDAI and LLVIP datasets validate the significant performance advantages of our proposed method and show its applicability to a variety of practical application scenarios. Code will be available at https://github.com/wood-fish/DACFusion.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A joint object detection and semantic segmentation model with cross-attention and inner-attention mechanisms
    Nan, Zhixiong
    Peng, Jizhi
    Jiang, Jingjing
    Chen, Hui
    Yang, Ben
    Xin, Jingmin
    Zheng, Nanning
    NEUROCOMPUTING, 2021, 463 : 212 - 225
  • [32] Multi-Modal Object Detection Method Based on Dual-Branch Asymmetric Attention Backbone and Feature Fusion Pyramid Network
    Wang, Jinpeng
    Su, Nan
    Zhao, Chunhui
    Yan, Yiming
    Feng, Shou
    REMOTE SENSING, 2024, 16 (20)
  • [33] Inter-Frame Multiscale Probabilistic Cross-Attention for Surveillance Object Detection
    Xu, Huanhuan
    Hu, Xiyuan
    Zhou, Yichao
    2024 IEEE 11TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS, DSAA 2024, 2024, : 565 - 573
  • [34] A Cross-Attention and Multilevel Feature Fusion Network for Breast Lesion Segmentation in Ultrasound Images
    Liu, Guoqi
    Zhou, Yanan
    Wang, Jiajia
    Chen, Zongyu
    Liu, Dong
    Chang, Baofang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [35] Dual Stream Cross Domain Feature Fusion for Land-Oceanic Object Detection
    Lv, JunFeng
    Hui, Tian
    Xu, YueLei
    Zhi, YongFeng
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 3865 - 3875
  • [36] Joint-attention feature fusion network and dual-adaptive NMS for object detection
    Ma, Wentao
    Zhou, Tongqing
    Qin, Jiaohua
    Zhou, Qingyang
    Cai, Zhiping
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [37] LiDAR-Guided Cross-Attention Fusion for Hyperspectral Band Selection and Image Classification
    Yang, Judy X.
    Zhou, Jun
    Wang, Jing
    Tian, Hui
    Liew, Alan Wee-Chung
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [38] Cross-stage feature fusion and efficient self-attention for salient object detection
    Xia, Xiaofeng
    Ma, Yingdong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 104
  • [39] Attention and Feature Fusion SSD for Remote Sensing Object Detection
    Lu, Xiaocong
    Ji, Jian
    Xing, Zhiqi
    Miao, Qiguang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [40] Object Detection Network Based on Feature Fusion and Attention Mechanism
    Zhang, Ying
    Chen, Yimin
    Huang, Chen
    Gao, Mingke
    FUTURE INTERNET, 2019, 11 (01):