Joint-attention feature fusion network and dual-adaptive NMS for object detection

被引:35
|
作者
Ma, Wentao [1 ]
Zhou, Tongqing [1 ]
Qin, Jiaohua [2 ]
Zhou, Qingyang [2 ]
Cai, Zhiping [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
[2] Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha 410004, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Joint-attention; Adaptive NMS;
D O I
10.1016/j.knosys.2022.108213
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attention mechanisms and Non-Maximum Suppression (NMS) have proven to be effective components in object detection. However, feature fusion of different scales and layers based on a single attention mechanism cannot always yield gratifying performance, and may introduce redundant information that makes the results worse than expected. NMS methods, on the other hand, generally face the single-constant threshold dilemma, namely, a lower threshold leads to the miss of highly overlapped instance objects while a higher one brings in more false positives. Therefore, how to optimize different dimensions of correlation in feature mapping and how to adaptively set the NMS threshold still hinder effective object detection. While independently addressing each will cause suboptimal detection, this paper proposes to feed the informative feature representation from a joint-attention feature fusion network into adaptive NMS for a comprehensive performance enhancement. Specifically, we embed two types of attention modules in a three-level Feature Pyramid Network (FPN): the channel-attention module is adopted for enhanced feature representation by re-evaluating relationships between channels from a global perspective; the position-attention module is used to exploit the correlation between features to discover rich contextual feature information. Furthermore, we develop dual-adaptive NMS to dynamically adjust the suppression thresholds according to instance objects density, namely, the threshold rises as instance objects gather and decays when objects appear sparsely. The proposed method is evaluated on the COCO dataset and extensive experimental results demonstrate its superior performance compared with existing methods. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Object Detection Network Based on Feature Fusion and Attention Mechanism
    Zhang, Ying
    Chen, Yimin
    Huang, Chen
    Gao, Mingke
    FUTURE INTERNET, 2019, 11 (01):
  • [2] Object Detection by Attention-Guided Feature Fusion Network
    Shi, Yuxuan
    Fan, Yue
    Xu, Siqi
    Gao, Yue
    Gao, Ran
    SYMMETRY-BASEL, 2022, 14 (05):
  • [3] Object Detection Algorithm Based on Adaptive Feature Fusion and Cosine Similarity IoU-NMS
    Ma S.
    Li N.
    Peng G.
    Yang X.
    Hou Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (01): : 112 - 121
  • [4] Dual-feature Fusion Attention Network for Small Object Segmentation
    Fei, Xin
    Li, Xiaojie
    Shi, Canghong
    Ren, Hongping
    Mumtaz, Imran
    Guo, Jun
    Wu, Yu
    Luo, Yong
    Lv, Jiancheng
    Wu, Xi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 160
  • [5] A bilateral filtering dual-adaptive moving object detection method
    Huang, Chao
    Xie, Weicheng
    Yang, Xiaoming
    Zhang, Xue
    Xu, Qiang
    Journal of Computational Information Systems, 2013, 9 (18): : 7549 - 7556
  • [6] Dual Attention Feature Fusion for Visible-Infrared Object Detection
    Hu, Yuxuan
    Shi, Limin
    Yao, Libo
    Weng, Lubin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 53 - 65
  • [7] Convolutional Feature Frequency Adaptive Fusion Object Detection Network
    Mao, Lin
    Li, Xuemeng
    Yang, Dawei
    Zhang, Rubo
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3545 - 3560
  • [8] Convolutional Feature Frequency Adaptive Fusion Object Detection Network
    Lin Mao
    Xuemeng Li
    Dawei Yang
    Rubo Zhang
    Neural Processing Letters, 2021, 53 : 3545 - 3560
  • [9] Attention guided contextual feature fusion network for salient object detection
    Zhang, Jin
    Shi, Yanjiao
    Zhang, Qing
    Cui, Liu
    Chen, Ying
    Yi, Yugen
    IMAGE AND VISION COMPUTING, 2022, 117
  • [10] Dual-Template Siamese Network with Attention Feature Fusion for Object Tracking
    Liu, Minhua
    Shi, Jiantong
    Wang, Yu
    RADIOENGINEERING, 2023, 32 (03) : 371 - 380