Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations

被引:0
|
作者
Xu, Yingying [1 ,2 ]
Lu, Jiajun [3 ]
Zhang, Pengwei [4 ]
Gao, Kejie [5 ]
Huang, Yuqi [1 ,6 ]
机构
[1] Zhejiang Univ, Inst Power Machinery & Vehicular Engn, Coll Energy Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou 310015, Peoples R China
[3] Huzhou Inst Ind Control Technol, Huzhou 313000, Peoples R China
[4] Yantai Jereh Petr Equipment & Technol Co Ltd, Yantai 264000, Peoples R China
[5] Zhejiang Leapenergy Technol Co Ltd, Hangzhou 310051, Peoples R China
[6] Zhejiang Univ, Qingshanhu Energy Res Ctr, Hangzhou 310027, Peoples R China
关键词
Lithium-ion battery; Confined space; FDS simulation; Thermal runaway flame; Thermal runaway propagation; BEHAVIOR; SAFETY; MODEL; HEAT;
D O I
10.1016/j.est.2025.116154
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal safety of lithium-ion batteries (LIBs) in confined spaces remains a critical challenge in power battery pack design. This study conducts a multidimensional evaluation into the effects of spatial scales on thermal runaway (TR) characteristics through integrated experimental and simulation approaches. Key findings reveal that reducing spatial volume from 8.0 x 108 mm3 to 2.88 x 105 mm3 significantly advances the TR trigger time of single cells by 973 s (from 1490s to 517 s), attributed to accelerated heat accumulation under degraded thermal dissipation. Furthermore, the TR propagation interval between adjacent batteries shortens by 64 s, revealing that spatial compression accelerates the chain reaction of TR through enhanced heat transfer. The simulation based on the Fire Dynamics Simulator (FDS) demonstrated the flame development dynamics in a confined environment, with a heat release rate simulation error within 4 %. Notably, vertical height reduction proves pivotal in flame suppression-spaces below 80 mm reduce heat flux to adjacent batteries by 52.3 % compared to 800 mm. These findings establish key spatial scale threshold parameters for thermal safety strategies in transportation and storage scenarios. And the innovative application of FDS provides advanced engineering solutions for battery pack design and TR fire prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Experimental Analysis of Thermal Runaway Propagation Risk within 18650 Lithium-Ion Battery Modules
    Zhong, Guobin
    Li, Huang
    Wang, Chao
    Xu, Kaiqi
    Wang, Qingsong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1925 - A1934
  • [42] Quantitative analysis on the heat transfer modes in the process of thermal runaway propagation in lithium-ion battery pack under confined and semi-confined space
    Yan, Wei
    Wang, Zhirong
    Chen, Shichen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176
  • [43] Investigation of thermal runaway characteristics of lithium-ion battery in confined space under the influence of ventilation and humidity
    Mei, Jie
    Shi, Guoqing
    Chen, Mingyi
    Li, Qing
    Liu, He
    Liu, Sun
    Wang, Di
    Cao, Jingao
    Zhang, Liwei
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [44] Effects of the battery enclosure on the thermal behaviors of lithium-ion battery module during thermal runaway propagation by external-heating
    Li, Zijian
    Guo, Yinliang
    Zhang, Peihong
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [45] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
  • [46] Inhibition of Thermal Runaway Propagation in Lithium-Ion Battery Pack by Minichannel Cold Plates and Insulation Layers
    Liu, Xinyu
    Zhou, Zhifu
    Wu, Wei-Tao
    Lv, Jizu
    Hu, Chengzhi
    Gao, Linsong
    Li, Yang
    Li, Yubai
    Song, Yongchen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [47] CFD study of nail penetration induced thermal runaway propagation in Lithium-Ion battery cell pack
    Uwitonze, Hosanna
    Ni, Aleksey
    Nagulapati, Vijay Mohan
    Kim, Heehyang
    Lim, Hankwon
    APPLIED THERMAL ENGINEERING, 2024, 243
  • [48] Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module
    Rui, Xinyu
    Feng, Xuning
    Wang, Hewu
    Yang, Huiqian
    Zhang, Youqun
    Wan, Mingchun
    Wei, Yaping
    Ouyang, Minggao
    APPLIED THERMAL ENGINEERING, 2021, 199
  • [49] Lithium-Ion Battery Thermal Runaway Propagation Characteristics Under 20 kPa with Different Airflow Rates
    Sun, Qiang
    Liu, Hangxin
    Zhi, Maoyong
    Zhao, Chenxi
    Jia, Jingyun
    Lv, Pengfei
    Xie, Song
    He, Yuanhua
    Chen, Xiantao
    FIRE TECHNOLOGY, 2023, 59 (03) : 1157 - 1179
  • [50] Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model
    Xu, Chengshan
    Wang, Huaibin
    Jiang, Fachao
    Feng, Xuning
    Lu, Languang
    Jin, Changyong
    Zhang, Fangshu
    Huang, Wensheng
    Zhang, Mengqi
    Ouyang, Minggao
    ENERGY, 2023, 268