Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations

被引:0
|
作者
Xu, Yingying [1 ,2 ]
Lu, Jiajun [3 ]
Zhang, Pengwei [4 ]
Gao, Kejie [5 ]
Huang, Yuqi [1 ,6 ]
机构
[1] Zhejiang Univ, Inst Power Machinery & Vehicular Engn, Coll Energy Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou 310015, Peoples R China
[3] Huzhou Inst Ind Control Technol, Huzhou 313000, Peoples R China
[4] Yantai Jereh Petr Equipment & Technol Co Ltd, Yantai 264000, Peoples R China
[5] Zhejiang Leapenergy Technol Co Ltd, Hangzhou 310051, Peoples R China
[6] Zhejiang Univ, Qingshanhu Energy Res Ctr, Hangzhou 310027, Peoples R China
关键词
Lithium-ion battery; Confined space; FDS simulation; Thermal runaway flame; Thermal runaway propagation; BEHAVIOR; SAFETY; MODEL; HEAT;
D O I
10.1016/j.est.2025.116154
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal safety of lithium-ion batteries (LIBs) in confined spaces remains a critical challenge in power battery pack design. This study conducts a multidimensional evaluation into the effects of spatial scales on thermal runaway (TR) characteristics through integrated experimental and simulation approaches. Key findings reveal that reducing spatial volume from 8.0 x 108 mm3 to 2.88 x 105 mm3 significantly advances the TR trigger time of single cells by 973 s (from 1490s to 517 s), attributed to accelerated heat accumulation under degraded thermal dissipation. Furthermore, the TR propagation interval between adjacent batteries shortens by 64 s, revealing that spatial compression accelerates the chain reaction of TR through enhanced heat transfer. The simulation based on the Fire Dynamics Simulator (FDS) demonstrated the flame development dynamics in a confined environment, with a heat release rate simulation error within 4 %. Notably, vertical height reduction proves pivotal in flame suppression-spaces below 80 mm reduce heat flux to adjacent batteries by 52.3 % compared to 800 mm. These findings establish key spatial scale threshold parameters for thermal safety strategies in transportation and storage scenarios. And the innovative application of FDS provides advanced engineering solutions for battery pack design and TR fire prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [22] Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems
    Zhang, Xiong
    Yao, Jian
    Zhu, Linpei
    Wu, Jun
    Wei, Dan
    Wang, Qingquan
    Chen, Hu
    Li, Kaixiang
    Gao, Zhenyu
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [23] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [24] Thermal runaway front in failure propagation of long-shape lithium-ion battery
    Zhang, Fangshu
    Feng, Xuning
    Xu, Chengshan
    Jiang, Fachao
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 182
  • [25] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [26] Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling
    Jin, Changyong
    Sun, Yuedong
    Wang, Huaibin
    Zheng, Yuejiu
    Wang, Shuyu
    Rui, Xinyu
    Xu, Chengshan
    Feng, Xuning
    Wang, Hewu
    Ouyang, Minggao
    APPLIED ENERGY, 2022, 312
  • [27] Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling
    Jin, Changyong
    Sun, Yuedong
    Wang, Huaibin
    Zheng, Yuejiu
    Wang, Shuyu
    Rui, Xinyu
    Xu, Chengshan
    Feng, Xuning
    Wang, Hewu
    Ouyang, Minggao
    APPLIED ENERGY, 2022, 312
  • [28] Thermal and Electrochemical Analysis of Thermal Runaway Propagation of Samsung Cylindrical Cells in Lithium-ion Battery Modules
    Belt, Jeffrey
    Sorensen, Alexander
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (01)
  • [29] Numerical investigation of suppressing thermal runaway propagation in a lithium-ion battery pack using thermal insulators
    Gong, Junhui
    Liu, Bo
    Lian, Haochen
    Liu, Jingyi
    Fu, Hui
    Miao, Yuxuan
    Liu, Jialong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 1063 - 1075
  • [30] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81