Efficient Client Sampling with Compression in Heterogeneous Federated Learning

被引:0
|
作者
Marnissi, Ouiame [1 ]
El Hammouti, Hajar [1 ]
Bergou, El Houcine [1 ]
机构
[1] Mohammed VI Polytech Univ UM6P, Coll Comp, Ben Guerir, Morocco
关键词
Federated learning; Client sampling; Heterogeneity; Resource allocation;
D O I
10.1109/INFOCOMWKSHPS61880.2024.10620859
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) has emerged as a promising decentralized machine learning (ML) paradigm where distributed clients collaboratively train models without sharing their private data. However, due to their limited resources and heterogeneous properties, only a small subset of clients can participate at a given time. Furthermore, the high dimensions of ML models incur a massive communication overhead which considerably slows down the convergence of FL. To address the aforementioned challenges, we propose FedHSC, a framework that considers both system and statistical heterogeneity. Specifically, at each communication round, the clients are sampled based on their data properties combined with the importance of their local learning update. After completing their local training, the selected clients share compressed updates with the server for aggregation. The compression rate is adjusted for each client to meet the communication delay requirement. Experimental results on CIFAR-10 show the efficiency of our approach and its robustness to Non-IID data.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Fast Heterogeneous Federated Learning with Hybrid Client Selection
    Song, Duanxiao
    Shen, Guangyuan
    Gao, Dehong
    Yang, Libin
    Zhou, Xukai
    Pan, Shirui
    Lou, Wei
    Zhou, Fang
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2006 - 2015
  • [22] FedACS: an Efficient Federated Learning Method Among Multiple Medical Institutions with Adaptive Client Sampling
    Gu, Yunchao
    Hu, Quanquan
    Wang, Xinliang
    Zhou, Zhong
    Lu, Sixu
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [23] RFCSC: Communication efficient reinforcement federated learning with dynamic client selection and adaptive gradient compression
    Pan, Zhenhui
    Li, Yawen
    Guan, Zeli
    Liang, Meiyu
    Li, Ang
    Wang, Jia
    Kou, Feifei
    NEUROCOMPUTING, 2025, 612
  • [24] Client Scheduling and Resource Management for Efficient Training in Heterogeneous IoT-Edge Federated Learning
    Cui, Yangguan
    Cao, Kun
    Cao, Guitao
    Qiu, Meikang
    Wei, Tongquan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (08) : 2407 - 2420
  • [25] Probabilistic Client Sampling and Power Allocation for Wireless Federated Learning
    Xu, Wen
    Liang, Ben
    Boudreau, Gary
    Sokun, Hamza
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [26] Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
    Nishio, Takayuki
    Yonetani, Ryo
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [27] Compressed Client Selection for Efficient Communication in Federated Learning
    Mohamed, Aissa Hadj
    Assumpcao, Nicolas R. G.
    Astudillo, Carlos A.
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [28] EFFICIENT CLIENT CONTRIBUTION EVALUATION FOR HORIZONTAL FEDERATED LEARNING
    Zhao, Jie
    Zhu, Xinghua
    Wang, Jianzong
    Xiao, Jing
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3060 - 3064
  • [29] Adaptive client selection and model aggregation for heterogeneous federated learning
    Zhai, Rui
    Jin, Haozhe
    Gong, Wei
    Lu, Ke
    Liu, Yanhong
    Song, Yalin
    Yu, Junyang
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [30] Federated Learning With Heterogeneous Client Expectations: A Game Theory Approach
    Shen, Sheng
    Liu, Chi
    Lim, Teng Joon
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8220 - 8237