Differential Privacy in Federated Learning for Collaborative Radio Map Construction and Environment Sensing

被引:0
|
作者
Tian, Jijia
Chen, Wangqian
Chen, Junting [1 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
D O I
10.1109/ICCWORKSHOPS59551.2024.10615418
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative radio map facilitates precise and secure monitoring and management of wireless communication environment by encouraging collective participation and information sharing. However, the collaborative construction of radio map requires a substantial amount of data and raises significant concerns about user privacy. This paper proposes a federated learning strategy with differential privacy, aiming to safeguard user location privacy for collaborative radio map and virtual environment construction. It addresses inherent heterogeneity challenge in local sensing data by designing a scaling matrix for the local gradients, effectively mitigating imbalances among different users. In addition, this paper proposes an adaptive heterogeneous noise design for differential privacy to optimize the allocation of noise added to local gradients, seeking a near-optimal balance between preserving location privacy and maintaining radio map construction performance. Experiments demonstrate that the proposed method fulfills a remarkable around 200% improvement in uncertainty of external adversary localization, accompanied by only 0.2 dB deviation in the construction accuracy of the radio map.
引用
收藏
页码:792 / 797
页数:6
相关论文
共 50 条
  • [31] Efficient federated learning privacy preservation method with heterogeneous differential privacy
    Ling, Jie
    Zheng, Junchang
    Chen, Jiahui
    COMPUTERS & SECURITY, 2024, 139
  • [32] Federated learning for preserving data privacy in collaborative healthcare research
    Loftus, Tyler J.
    Ruppert, Matthew M.
    Shickel, Benjamin
    Ozrazgat-Baslanti, Tezcan
    Balch, Jeremy A.
    Efron, Philip A.
    Upchurch, Gilbert R.
    Rashidi, Parisa
    Tignanelli, Christopher
    Bian, Jiang
    Bihorac, Azra
    DIGITAL HEALTH, 2022, 8
  • [33] Combining homomorphic encryption and differential privacy in federated learning
    Sebert, Arnaud Grivet
    Checri, Marina
    Stan, Oana
    Sirdey, Renaud
    Gouy-Pailler, Cedric
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 145 - 151
  • [34] Differential Privacy Federated Learning Based on Adaptive Adjustment
    Cheng, Yanjin
    Li, Wenmin
    Qin, Sujuan
    Tu, Tengfei
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4777 - 4795
  • [35] Bidirectional adaptive differential privacy federated learning scheme
    Li, Yang
    Xu, Jin
    Zhu, Jianming
    Wang, Youwei
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 158 - 169
  • [36] A federated learning scheme meets dynamic differential privacy
    Guo, Shengnan
    Wang, Xibin
    Long, Shigong
    Liu, Hai
    Hai, Liu
    Sam, Toong Hai
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (03) : 1087 - 1100
  • [37] The Impact of Differential Privacy on Model Fairness in Federated Learning
    Gu, Xiuting
    Zhu, Tianqing
    Li, Jie
    Zhang, Tao
    Ren, Wei
    NETWORK AND SYSTEM SECURITY, NSS 2020, 2020, 12570 : 419 - 430
  • [38] Dynamic Personalized Federated Learning with Adaptive Differential Privacy
    Yang, Xiyuan
    Huang, Wenke
    Ye, Mang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Effects of Quantization on Federated Learning with Local Differential Privacy
    Kim, Muah
    Gunlu, Onur
    Schaefer, Rafael F.
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 921 - 926
  • [40] HierFedPDP:Hierarchical federated learning with personalized differential privacy
    Li, Sitong
    Liu, Yifan
    Feng, Fan
    Liu, Yi
    Li, Xiaofei
    Liu, Zhenpeng
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2024, 86