Combining homomorphic encryption and differential privacy in federated learning

被引:2
|
作者
Sebert, Arnaud Grivet [1 ]
Checri, Marina [1 ]
Stan, Oana [1 ]
Sirdey, Renaud [1 ]
Gouy-Pailler, Cedric [1 ]
机构
[1] Univ Paris Saclay, CEA, List, F-91120 Palaiseau, France
关键词
Federated learning; differential privacy; homomorphic encryption; quantization;
D O I
10.1109/PST58708.2023.10320195
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent works have investigated the relevance and practicality of using techniques such as Differential Privacy (DP) or Homomorphic Encryption (HE) to strengthen training data privacy in the context of Federated Learning protocols. As these two techniques cover different sources of confidentiality threats (other clients/end-users for the former, aggregation server for the latter), there is a need to consistently combine them in order to bridge the gap towards more realistic deployment scenarios. In this paper, we achieve that goal by means of a novel stochastic quantization operator which allows us to establish DP guarantees when the noise is both quantized and bounded due to the use of HE. The paper is concluded by experiments on the FEMNIST dataset which show that the precision required to get state-of-the art privacy/utility trade-off (which directly impacts HE parameters and, hence, HE operations performances) results in a computation time overhead between 0.2% and 1.1% imputable to HE (depending on the key setup, either single key or threshold), for the whole training of a 500k parameters model and state-of-the-art privacy/utility trade-off.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [1] Privacy Preserving Federated Learning: A Novel Approach for Combining Differential Privacy and Homomorphic Encryption
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 162 - 177
  • [2] Secure Federated Learning Scheme Based on Differential Privacy and Homomorphic Encryption
    Zhang, Xuyan
    Huang, Da
    Tang, Yuhua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 435 - 446
  • [3] Protecting Data Privacy in Federated Learning Combining Differential Privacy and Weak Encryption
    Wang, Chuanyin
    Ma, Cunqing
    Li, Min
    Gao, Neng
    Zhang, Yifei
    Shen, Zhuoxiang
    SCIENCE OF CYBER SECURITY, SCISEC 2021, 2021, 13005 : 95 - 109
  • [4] Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning
    Fang, Haokun
    Qian, Quan
    FUTURE INTERNET, 2021, 13 (04):
  • [5] Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    Vinh, Thinh Le
    FUTURE INTERNET, 2023, 15 (09)
  • [6] Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption
    Qiu, Fengyuan
    Yang, Hao
    Zhou, Lu
    Ma, Chuan
    Fang, LiMing
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 427 - 440
  • [7] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [8] Privacy Preservation using Federated Learning and Homomorphic Encryption: A Study
    Ajay, D. M.
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 451 - 458
  • [9] Federated Learning with Privacy Preservation in Large-Scale Distributed Systems Using Differential Privacy and Homomorphic Encryption
    Chen, Yue
    Yang, Yufei
    Liang, Yingwei
    Zhu, Taipeng
    Huang, Dehui
    Informatica (Slovenia), 2025, 49 (13): : 123 - 142
  • [10] ADPHE-FL: Federated learning method based on adaptive differential privacy and homomorphic encryption
    Wu, Tao
    Deng, Yulin
    Zhou, Qizhao
    Chen, Xi
    Zhang, Ming
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (03)