Prediction of colorectal cancer microsatellite instability and tumor mutational burden from histopathological images using multiple instance learning

被引:0
|
作者
Wang, Wenyan [1 ]
Shi, Wei [2 ]
Nie, Chuanqi [1 ]
Xing, Weipeng [1 ]
Yang, Hailong [1 ]
Li, Feng [3 ]
Liu, Jinyang [2 ,4 ]
Tian, Geng [2 ,4 ]
Wang, Bing [1 ]
Yang, Jialiang [2 ,4 ]
机构
[1] Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Anhui, Peoples R China
[2] Geneis Beijing Co Ltd, Beijing 100102, Peoples R China
[3] Shenzhen Polytech, Sch Artificial Intelligence, Shenzhen, Peoples R China
[4] Qingdao Geneis Inst Big Data Min & Precis Med, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
Microsatellite instability (MSI); tumor mutation burden (TMB); colorectal cancer patients (CRCs); Multiple instance learning method; pathological whole slide images (WSI); BETHESDA GUIDELINES; MODEL;
D O I
10.1016/j.bspc.2025.107608
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advancements in deep learning have enabled the prediction of microsatellite instability (MSI) and tumor mutational burden (TMB) status of colorectal cancer (CRC) patients using whole slide histopathological images (WSIs). However, current methods suffer from poor prediction accuracy and lack interpretability, which hinders their clinical application. To address this, we propose a new cascaded two-stage multiple instance learning (MIL) method called CasNet for predicting MSI and TMB. CasNet employs a supervised ResNet model to extract informative image features from patches within the WSI. It then evaluates the importance of each patch using a gradient-based class activation graph (Grad-CAM) and an attention mechanism. On the CRC dataset from the cancer genome atlas (TCGA), CasNet achieved an area-under-the-curve (AUC) of 0.909 for predicting MSI status and a mean AUC of 0.8818 in 5-fold cross-validation for TMB prediction, outperforming seven other state-of-theart methods. Furthermore, we demonstrate the robustness of CasNet by achieving AUC scores of 0.88 and 0.84 for MSI and TMB predictions, respectively, using only 40% of the samples for training. To enhance the interpretability of CasNet, a segmentation method based on Hover-Net is utilized to analyze the differences in cell content between MSI and MSS groups. Overall, CasNet is an accurate and interpretable method for predicting MSI and TMB, making it a promising in predicting biomarkers even with limited training data.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Comparative Effectiveness of Immune Checkpoint Inhibitors vs Chemotherapy in Patients With Metastatic Colorectal Cancer With Measures of Microsatellite Instability, Mismatch Repair, or Tumor Mutational Burden
    Quintanilha, Julia C. F.
    Graf, Ryon P.
    Fisher, Virginia A.
    Oxnard, Geoffrey R.
    Ellis, Haley
    Panarelli, Nicole
    Lin, Douglas I.
    Li, Gerald
    Huang, Richard S. P.
    Ross, Jeffrey S.
    Myer, Parvathi A.
    Klempner, Samuel J.
    JAMA NETWORK OPEN, 2023, 6 (01) : e2252244
  • [42] Constrained multiple instance learning for ulcerative colitis prediction using histological images
    del Amor, Rocio
    Meseguer, Pablo
    Parigi, Tommaso Lorenzo
    Villanacci, Vincenzo
    Colomer, Adrian
    Launet, Laetitia
    Bazarova, Alina
    Tontini, Gian Eugenio
    Bisschops, Raf
    de Hertogh, Gert
    Ferraz, Jose G.
    Goetz, Martin
    Gui, Xianyong
    Hayee, Bu'Hussain
    Lazarev, Mark
    Panaccione, Remo
    Parra-Blanco, Adolfo
    Bhandari, Pradeep
    Pastorelli, Luca
    Rath, Timo
    Royset, Elin Synnove
    Vieth, Michael
    Zardo, Davide
    Grisan, Enrico
    Ghosh, Subrata
    Iacucci, Marietta
    Naranjo, Valery
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 224
  • [43] Histopathological bladder cancer gene mutation prediction with hierarchical deep multiple-instance learning
    Yan, Rui
    Shen, Yijun
    Zhang, Xueyuan
    Xu, Peihang
    Wang, Jun
    Li, Jintao
    Ren, Fei
    Ye, Dingwei
    Zhou, S. Kevin
    MEDICAL IMAGE ANALYSIS, 2023, 87
  • [44] Predicting Tumor Mutational Burden from Liver Cancer Pathological Images Using Convolutional Neural Network
    Zhang, Hong
    Ren, Fei
    Wang, Zhonglie
    Rao, Xiaosong
    Li, Li
    Hao, Junbo
    Yan, Rui
    Luo, Jiancheng
    Du, Ming
    Zhang, Fa
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 920 - 925
  • [45] Evaluation of microsatellite instability in colorectal cancer samples by the ddPCR microsatellite instability assay in comparison to immunohistochemistry and fragment length analysis and in correlation to the tumour mutational burden (TMB) status
    Siemanowski, J.
    Heydt, C.
    Buhl, T.
    Buettner, R.
    Merkelbach-Bruse, S.
    VIRCHOWS ARCHIV, 2021, 479 (SUPPL 1) : S139 - S140
  • [46] Large-scale cancer genomic analysis reveals significant disparities between microsatellite instability and tumor mutational burden
    Choi, Jungyoon
    Kim, Jung Sun
    Park, Kyong Hwa
    Guo, Xingyi
    Kim, Yeul Hong
    CANCER RESEARCH, 2023, 83 (07)
  • [47] Frequency of BRCA mutation in biliary tract cancer and its correlation with tumor mutational burden (TMB) and microsatellite instability (MSI).
    Spizzo, Gilbert
    Puccini, Alberto
    Xiu, Joanne
    Goldberg, Richard M.
    Grothey, Axel
    Shields, Anthony Frank
    Arora, Sukeshi Patel
    Khushman, Moh'd M.
    Salem, Mohamed E.
    Battaglin, Francesca
    El-Deiry, Wafik S.
    Tokunaga, Ryuma
    Philip, Philip Agop
    Hall, Michael J.
    Marshall, John
    Kocher, Florian
    Korn, Wolfgang Michael
    Lenz, Heinz-Josef
    Seeber, Andreas
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [48] Large-Scale Cancer Genomic Analysis Reveals Significant Disparities between Microsatellite Instability and Tumor Mutational Burden
    Choi, Jungyoon
    Park, Kyong Hwa
    Kim, Yeul Hong
    Sa, Jason K.
    Sung, Hwa Jung
    Chen, Yu-Wei
    Chen, Zhishan
    Li, Chao
    Wen, Wanqing
    Zhang, Qingrun
    Shu, Xiao-ou
    Zheng, Wei
    Kim, Jung Sun
    Guo, Xingyi
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2024, 33 (05) : 712 - 720
  • [49] Tumor mutational load, microsatellite instability, BRCAness, and actionable alterations in metastatic colorectal cancer: Results from the TRIBE2 study
    Antoniotti, C.
    Rossini, D.
    Marmorino, F.
    Lonardi, S.
    Corti, F.
    Moretto, R.
    Ugolini, C.
    Latiano, T.
    Giordano, M.
    Tamburini, E.
    Passardi, A.
    Santini, D.
    Zaniboni, A.
    Aprile, G.
    Bordonaro, R.
    Zucchelli, G.
    Conca, V.
    Fontanini, G.
    Lenz, H.
    Falcone, A.
    Korn, M.
    Cremolini, C.
    ANNALS OF ONCOLOGY, 2020, 31 : S238 - S238
  • [50] Tumor mutational load, microsatellite instability and actionable mutations in metastatic colorectal cancer: Results from the TRIBE2 study.
    Antoniotti, Carlotta
    Marmorino, Federica
    Lonardi, Sara
    Corti, Francesca
    Rossini, Daniele
    Moretto, Roberto
    Ugolini, Clara
    Giordano, Mirella
    Tamburini, Emiliano
    Santini, Daniele
    Aprile, Giuseppe
    Bordonaro, Roberto
    Zucchelli, Gemma
    Fontanini, Gabriella
    Lenz, Heinz-Josef
    Falcone, Alfredo
    Korn, Wolfgang Michael
    Cremolini, Chiara
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)