Prediction of colorectal cancer microsatellite instability and tumor mutational burden from histopathological images using multiple instance learning

被引:0
|
作者
Wang, Wenyan [1 ]
Shi, Wei [2 ]
Nie, Chuanqi [1 ]
Xing, Weipeng [1 ]
Yang, Hailong [1 ]
Li, Feng [3 ]
Liu, Jinyang [2 ,4 ]
Tian, Geng [2 ,4 ]
Wang, Bing [1 ]
Yang, Jialiang [2 ,4 ]
机构
[1] Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Anhui, Peoples R China
[2] Geneis Beijing Co Ltd, Beijing 100102, Peoples R China
[3] Shenzhen Polytech, Sch Artificial Intelligence, Shenzhen, Peoples R China
[4] Qingdao Geneis Inst Big Data Min & Precis Med, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
Microsatellite instability (MSI); tumor mutation burden (TMB); colorectal cancer patients (CRCs); Multiple instance learning method; pathological whole slide images (WSI); BETHESDA GUIDELINES; MODEL;
D O I
10.1016/j.bspc.2025.107608
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advancements in deep learning have enabled the prediction of microsatellite instability (MSI) and tumor mutational burden (TMB) status of colorectal cancer (CRC) patients using whole slide histopathological images (WSIs). However, current methods suffer from poor prediction accuracy and lack interpretability, which hinders their clinical application. To address this, we propose a new cascaded two-stage multiple instance learning (MIL) method called CasNet for predicting MSI and TMB. CasNet employs a supervised ResNet model to extract informative image features from patches within the WSI. It then evaluates the importance of each patch using a gradient-based class activation graph (Grad-CAM) and an attention mechanism. On the CRC dataset from the cancer genome atlas (TCGA), CasNet achieved an area-under-the-curve (AUC) of 0.909 for predicting MSI status and a mean AUC of 0.8818 in 5-fold cross-validation for TMB prediction, outperforming seven other state-of-theart methods. Furthermore, we demonstrate the robustness of CasNet by achieving AUC scores of 0.88 and 0.84 for MSI and TMB predictions, respectively, using only 40% of the samples for training. To enhance the interpretability of CasNet, a segmentation method based on Hover-Net is utilized to analyze the differences in cell content between MSI and MSS groups. Overall, CasNet is an accurate and interpretable method for predicting MSI and TMB, making it a promising in predicting biomarkers even with limited training data.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Microsatellite Instability, Tumor Mutational Burden, and Response to Immune Checkpoint Blockade in Patients with Prostate Cancer
    Lenis, Andrew T.
    Ravichandran, Vignesh
    Brown, Samantha
    Alam, Syed M.
    Katims, Andrew
    Truong, Hong
    Reisz, Peter A.
    Vasselman, Samantha
    Nweji, Barbara
    Autio, Karen A.
    Morris, Michael J.
    Slovin, Susan F.
    Rathkopf, Dana
    Danila, Daniel
    Woo, Sungmin
    Vargas, Hebert A.
    Laudone, Vincent P.
    Ehdaie, Behfar
    Reuter, Victor
    Arcila, Maria
    Berger, Michael F.
    Viale, Agnes
    Scher, Howard I.
    Schultz, Nikolaus
    Gopalan, Anuradha
    Donoghue, Mark T. A.
    Ostrovnaya, Irina
    Stopsack, Konrad H.
    Solit, David B.
    Abida, Wassim
    CLINICAL CANCER RESEARCH, 2024, 30 (17) : 3894 - 3903
  • [22] Deep learning to assess microsatellite instability directly from histopathological whole slide images in endometrial cancer
    Wang, Ching-Wei
    Muzakky, Hikam
    Firdi, Nabila Puspita
    Liu, Tzu-Chien
    Lai, Po-Jen
    Wang, Yu-Chi
    Yu, Mu-Hsien
    Chao, Tai-Kuang
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [23] Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images
    Morales-Alvarez, Pablo
    Schmidt, Arne
    Hernandez-Lobato, Jose Miguel
    Molina, Rafael
    PATTERN RECOGNITION, 2024, 146
  • [24] A deep multiple instance learning framework improves microsatellite instability detection from tumor next generation sequencing
    Ziegler, John
    Hechtman, Jaclyn F.
    Rana, Satshil
    Ptashkin, Ryan N.
    Jayakumaran, Gowtham
    Middha, Sumit
    Chavan, Shweta S.
    Vanderbilt, Chad
    Delair, Deborah
    Casanova, Jacklyn
    Shia, Jinru
    Degroat, Nicole
    Benayed, Ryma
    Ladanyi, Marc
    Berger, Michael F.
    Fuchs, Thomas J.
    Brannon, A. Rose
    Zehir, Ahmet
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [25] Histopathological characteristics and artificial intelligence for predicting tumor mutational burden-high colorectal cancer
    Shimada, Yoshifumi
    Okuda, Shujiro
    Watanabe, Yu
    Tajima, Yosuke
    Nagahashi, Masayuki
    Ichikawa, Hiroshi
    Nakano, Masato
    Sakata, Jun
    Takii, Yasumasa
    Kawasaki, Takashi
    Homma, Kei-ichi
    Kamori, Tomohiro
    Oki, Eiji
    Ling, Yiwei
    Takeuchi, Shiho
    Wakai, Toshifumi
    JOURNAL OF GASTROENTEROLOGY, 2021, 56 (06) : 547 - 559
  • [26] Histopathological characteristics and artificial intelligence for predicting tumor mutational burden-high colorectal cancer
    Yoshifumi Shimada
    Shujiro Okuda
    Yu Watanabe
    Yosuke Tajima
    Masayuki Nagahashi
    Hiroshi Ichikawa
    Masato Nakano
    Jun Sakata
    Yasumasa Takii
    Takashi Kawasaki
    Kei-ichi Homma
    Tomohiro Kamori
    Eiji Oki
    Yiwei Ling
    Shiho Takeuchi
    Toshifumi Wakai
    Journal of Gastroenterology, 2021, 56 : 547 - 559
  • [27] Concordance Analysis between Microsatellite Instability Status and Tumor Mutational Burden in Colorectal Cancer Patients: A Nested Case-Control Study
    Rodon Font, Natalia
    No Garbarino, Yessica Anahi
    Diaz Castello, Olga
    Puig Torrus, Xavier
    MODERN PATHOLOGY, 2020, 33 (SUPPL 2) : 756 - 756
  • [28] Concordance Analysis between Microsatellite Instability Status and Tumor Mutational Burden in Colorectal Cancer Patients: A Nested Case-Control Study
    Rodon Font, Natalia
    No Garbarino, Yessica Anahi
    Diaz Castello, Olga
    Puig Torrus, Xavier
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 756 - 756
  • [29] Tumor mutational burden and microsatellite instability in gynecologic cancers from C-CAT database
    Xi, Qian
    Kage, Hidenori
    Matsunaga, Asami
    Nishijima, Akira
    Sone, Kenbun
    Oda, Katsutoshi
    CANCER SCIENCE, 2024, 115 : 942 - 942
  • [30] Colorectal Cancer Survival Prediction Using Deep Distribution Based Multiple-Instance Learning
    Li, Xingyu
    Jonnagaddala, Jitendra
    Cen, Min
    Zhang, Hong
    Xu, Steven
    ENTROPY, 2022, 24 (11)