Prediction of colorectal cancer microsatellite instability and tumor mutational burden from histopathological images using multiple instance learning

被引:0
|
作者
Wang, Wenyan [1 ]
Shi, Wei [2 ]
Nie, Chuanqi [1 ]
Xing, Weipeng [1 ]
Yang, Hailong [1 ]
Li, Feng [3 ]
Liu, Jinyang [2 ,4 ]
Tian, Geng [2 ,4 ]
Wang, Bing [1 ]
Yang, Jialiang [2 ,4 ]
机构
[1] Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Anhui, Peoples R China
[2] Geneis Beijing Co Ltd, Beijing 100102, Peoples R China
[3] Shenzhen Polytech, Sch Artificial Intelligence, Shenzhen, Peoples R China
[4] Qingdao Geneis Inst Big Data Min & Precis Med, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
Microsatellite instability (MSI); tumor mutation burden (TMB); colorectal cancer patients (CRCs); Multiple instance learning method; pathological whole slide images (WSI); BETHESDA GUIDELINES; MODEL;
D O I
10.1016/j.bspc.2025.107608
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advancements in deep learning have enabled the prediction of microsatellite instability (MSI) and tumor mutational burden (TMB) status of colorectal cancer (CRC) patients using whole slide histopathological images (WSIs). However, current methods suffer from poor prediction accuracy and lack interpretability, which hinders their clinical application. To address this, we propose a new cascaded two-stage multiple instance learning (MIL) method called CasNet for predicting MSI and TMB. CasNet employs a supervised ResNet model to extract informative image features from patches within the WSI. It then evaluates the importance of each patch using a gradient-based class activation graph (Grad-CAM) and an attention mechanism. On the CRC dataset from the cancer genome atlas (TCGA), CasNet achieved an area-under-the-curve (AUC) of 0.909 for predicting MSI status and a mean AUC of 0.8818 in 5-fold cross-validation for TMB prediction, outperforming seven other state-of-theart methods. Furthermore, we demonstrate the robustness of CasNet by achieving AUC scores of 0.88 and 0.84 for MSI and TMB predictions, respectively, using only 40% of the samples for training. To enhance the interpretability of CasNet, a segmentation method based on Hover-Net is utilized to analyze the differences in cell content between MSI and MSS groups. Overall, CasNet is an accurate and interpretable method for predicting MSI and TMB, making it a promising in predicting biomarkers even with limited training data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer
    Wang, Ching-Wei
    Liu, Tzu-Chien
    Lai, Po-Jen
    Muzakky, Hikam
    Wang, Yu-Chi
    Yu, Mu-Hsien
    Wu, Chia-Hua
    Chao, Tai-Kuang
    MEDICAL IMAGE ANALYSIS, 2025, 99
  • [2] Predicting gastric cancer tumor mutational burden from histopathological images using multimodal deep learning
    Li, Jing
    Liu, Haiyan
    Liu, Wei
    Zong, Peijun
    Huang, Kaimei
    Li, Zibo
    Li, Haigang
    Xiong, Ting
    Tian, Geng
    Li, Chun
    Yang, Jialiang
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (03) : 228 - 238
  • [3] Predicting colorectal cancer tumor mutational burden from histopathological images and clinical information using multi-modal deep learning
    Huang, Kaimei
    Lin, Binghu
    Liu, Jinyang
    Liu, Yankun
    Li, Jingwu
    Tian, Geng
    Yang, Jialiang
    BIOINFORMATICS, 2022, 38 (22) : 5108 - 5115
  • [4] Predicting Tumor Mutational Burden From Lung Adenocarcinoma Histopathological Images Using Deep Learning
    Niu, Yi
    Wang, Lixia
    Zhang, Xiaojie
    Han, Yu
    Yang, Chunjie
    Bai, Henan
    Huang, Kaimei
    Ren, Changjing
    Tian, Geng
    Yin, Shengjie
    Zhao, Yan
    Wang, Ying
    Shi, Xiaoli
    Zhang, Minghui
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [5] Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images
    Sandarenu, Piumi
    Millar, Ewan K. A.
    Song, Yang
    Browne, Lois
    Beretov, Julia
    Lynch, Jodi
    Graham, Peter H.
    Jonnagaddala, Jitendra
    Hawkins, Nicholas
    Huang, Junzhou
    Meijering, Erik
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images
    Piumi Sandarenu
    Ewan K. A. Millar
    Yang Song
    Lois Browne
    Julia Beretov
    Jodi Lynch
    Peter H. Graham
    Jitendra Jonnagaddala
    Nicholas Hawkins
    Junzhou Huang
    Erik Meijering
    Scientific Reports, 12
  • [7] Tumor mutation burden and microsatellite instability in colorectal cancer
    Fenizia, Francesca
    Pasquale, Raffaella
    Roma, Cristin
    Bergantino, Francesca
    Rachiglio, Anna Maria
    Chicchinelli, Nicoletta
    Graziano, Paolo
    Botti, Gerardo
    Tatangelo, Fabiana
    Scognamiglio, Giosue
    Allen, Christopher
    Lambiase, Matilde
    Iannaccone, Alessia
    Normanno, Nicola
    CANCER RESEARCH, 2019, 79 (13)
  • [8] Attention Based Deep Multiple Instance Learning Approach for Lung Cancer Prediction using Histopathological Images
    Moranguinho, Joao
    Pereira, Tania
    Ramos, Bernardo
    Morgado, Joana
    Costa, Jose Luis
    Oliveira, Helder P.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2852 - 2855
  • [9] Going beyond microsatellite instability for immunotherapy in metastatic colorectal cancer: Consensus molecular subtypes and tumor mutational burden
    Cohen, Romain
    Heran, Maximilien
    Pudlarz, Thomas
    Hilmi, Marc
    Tournigand, Christophe
    Andre, Thierry
    Rousseau, Benoit
    BULLETIN DU CANCER, 2019, 106 (02) : 151 - 161
  • [10] Predicting tumour mutational burden from histopathological images using multiscale deep learning
    Mika S. Jain
    Tarik F. Massoud
    Nature Machine Intelligence, 2020, 2 : 356 - 362