Elliptic equations in RN involving Sobolev supercritical and upper Hardy-Littlewood-Sobolev critical exponents

被引:0
|
作者
Madeira, Gustavo Ferron [1 ]
Miyagaki, Olimpio Hiroshi [1 ]
Pucci, Patrizia [2 ]
机构
[1] Univ Fed Sao Carlos UFSCar, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
基金
巴西圣保罗研究基金会;
关键词
Sobolev exponent; Hardy-Littlewood-Sobolev exponent; Choquard equations; Variational methods; Leray-Schauder degree; CHOQUARD EQUATION; GROUND-STATES; EXISTENCE; NONLINEARITIES; INDEFINITE; UNIQUENESS;
D O I
10.1016/j.jde.2025.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the existence of nontrivial nonnegative solutions of model parametric elliptic equations in RN involving a possibly supercritical term in Sobolev sense, and a nonlocal term with the upper Hardy-Littlewood-Sobolev critical exponent. Under some conditions, we describe the precise parametric range of existence and nonexistence of a nonnegative solution. Furthermore, in a slightly smaller range, a second nontrivial nonnegative solution is constructed. Additionally, infinitely many solutions, with energy asymptotic behavior, are also obtained if the growth near the origin is concave. These results, which are inspired by the pioneering work of Alama and Tarantello (1996) [2] in the local case of Dirichlet problems in bounded domains, are obtained by combining variational methods, Leray-Schauder degree theory, and the Krasnoselskii genus via biorthogonal functionals in separable and reflexive Banach spaces.<br /> (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:274 / 299
页数:26
相关论文
共 50 条
  • [31] Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
    An, Xiaoming
    Peng, Shuangjie
    Xie, Chaodong
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) : 2497 - 2504
  • [32] Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
    Xiaoming An
    Shuangjie Peng
    Chaodong Xie
    ScienceChina(Mathematics), 2019, 62 (12) : 2497 - 2504
  • [33] Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent
    Cassani, Daniele
    Van Schaftingen, Jean
    Zhang Jianjun
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) : 1377 - 1400
  • [34] ON THE HARDY-LITTLEWOOD-SOBOLEV TYPE SYSTEMS
    Cheng, Ze
    Huang, Genggeng
    Li, Congming
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) : 2059 - 2074
  • [35] Positive ground states for coupled nonlinear Choquard equations involving Hardy-Littlewood-Sobolev critical exponent
    You, Song
    Zhao, Peihao
    Wang, Qingxuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 48 : 182 - 211
  • [36] Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
    Guan, Wen
    Radulescu, Vicentiu D.
    Wang, Da-Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 355 : 219 - 247
  • [37] Existence of groundstates for Choquard type equations with Hardy-Littlewood-Sobolev critical exponent
    Li, Xiaowei
    Wang, Feizhi
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [38] Existence and multiplicity of solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity
    Song, Yueqiang
    Shi, Shaoyun
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 170 - 175
  • [39] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165
  • [40] Weighted Hardy-Littlewood-Sobolev inequalities on the upper half space
    Dou, Jingbo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (05)